Comparison of Antibacterial Properties of Magnesium Oxide and Copper Oxide Nanopowders: Green Synthesis Approach

Asaad A. H. AlZubaidi (1), Hayder Abdulmeer Abbas (2), Ban Mohammad Hassan (3)
(1) Al-Bayan University, Technical College of Engineering, Baghdad, Iraq
(2) Middle Technical University, Technical Instructor Training Institute, Baghdad, Iraq
(3) Middle Technical University, Technical Instructor Training Institute, Baghdad, Iraq
Fulltext View | Download
How to cite (IJASEIT) :
[1]
A. A. H. AlZubaidi, H. A. Abbas, and B. M. Hassan, “Comparison of Antibacterial Properties of Magnesium Oxide and Copper Oxide Nanopowders: Green Synthesis Approach”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 156–163, Feb. 2025.
Magnesium oxide (MgO) and copper (Cu) tiny particles were made using a green method that is good for the environment. Making the particles uses natural materials and does not involve harmful chemicals. This method uses plant extracts to help make and keep substances stable, showing a valuable and eco-friendly alternative to traditional ways of making them. In this study, we looked closely at the structure, shape, and light properties of the MgO and Cu nanoparticles we made, using different methods to investigate them. X-ray diffraction (XRD) analysis showed that the nanoparticles were successfully made and had no impurities. The FE-SEM images showed that the nanoparticles were smaller than 100 nanometers, which means they are very tiny. Also, energy-dispersive X-ray spectroscopy (EDX) helped identify the elements in the nanoparticles, confirming that magnesium, oxygen, and copper are present.  We used Fourier-transform infrared (FTIR) spectroscopy to find diverse groups of atoms in each sample, which helped us understand their chemical bonds and molecular structure.  We used UV-Vis spectroscopy to examine the light properties, showing the unique absorption peaks of MgO and Cu nanoparticles.  The antibacterial effects of the MgO and Cu nanoparticles were tested and compared with those of different types of bacteria.  The results showed that both kinds of nanoparticles have strong antibacterial effects. They could be used in coatings that fight germs, medical devices, and other areas that need protection against microbes.  This study shows the benefits of using green methods to make eco-friendly nanoparticles that work well against bacteria.  This approach helps create sustainable and valuable materials.

H. Alishah, S. Pourseyedi, S. Y. Ebrahimipour, S. E. Mahani, and N. Rafiei, “Green synthesis of starch-mediated CuO nanoparticles: Preparation, characterization, antimicrobial activities, and in vitro MTT assay against MCF-7 cell line,” Rend. Lincei, vol. 28, no. 1, pp. 65–71, Oct. 2016, doi: 10.1007/s12210-016-0574-y.

R. Loef, A. J. Houtepen, E. Talgorn, J. Schoonman, and A. Goossens, “Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells,” Nano Lett., vol. 9, no. 2, pp. 856–859, Jan. 2009, doi: 10.1021/nl803738q.

L. Wang, “A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode,” Electrochem. Commun., vol. 6, no. 2, pp. 225–229, Feb. 2004, doi: 10.1016/j.elecom.2003.12.004.

R. Sankar, R. Maheswari, S. Karthik, K. S. Shivashangari, and V. Ravikumar, “Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles,” Mater. Sci. Eng. C, vol. 44, pp. 234–239, Nov. 2014, doi: 10.1016/j.msec.2014.08.030.

P. Kanhed et al., “In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi,” Mater. Lett., vol. 115, pp. 13–17, Jan. 2014, doi: 10.1016/j.matlet.2013.10.011.

L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Krüger, “Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy,” J. Phys. Chem. C, vol. 116, no. 18, pp. 10232–10237, May 2012, doi:10.1021/jp303096m.

T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, and Y. Takita, “Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor,” J. Mater. Chem., vol. 8, no. 9, pp. 2037–2042, 1998, doi:10.1039/a801595c.

T. Ishihara, K. Kometani, M. Hashida, and Y. Takita, “Application of mixed oxide capacitor to the selective carbon dioxide sensor: I. Measurement of carbon dioxide sensing characteristics,” J. Electrochem. Soc., vol. 138, no. 1, pp. 173–176, Jan. 1991, doi:10.1149/1.2085530.

W. Zhang et al., “Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines,” Org. Biomol. Chem., vol. 12, no. 30, pp. 5752–5756, 2014, doi: 10.1039/c4ob00569d.

R. V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, and J. Norwig, “Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide,” Langmuir, vol. 17, no. 5, pp. 1406–1410, Jan. 2001, doi: 10.1021/la001331s.

Y. Zhao et al., “Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes,” Nanoscale, vol. 8, no. 48, pp. 19994–20000, 2016, doi: 10.1039/c6nr07292e.

A. P. Wanninayake, S. Gunashekar, S. Li, B. C. Church, and N. Abu-Zahra, “Performance enhancement of polymer solar cells using copper oxide nanoparticles,” Semicond. Sci. Technol., vol. 30, no. 6, p. 064004, May 2015, doi: 10.1088/0268-1242/30/6/064004.

P. C. Nagajyothi, P. Muthuraman, T. V. M. Sreekanth, D. H. Kim, and J. Shim, “Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells,” Arab. J. Chem., vol. 10, no. 2, pp. 215–225, Feb. 2017, doi:10.1016/j.arabjc.2016.01.011.

I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011.

S. Archana et al., “Synthesis of nickel oxide grafted graphene oxide nanocomposites—A systematic research on chemisorption of heavy metal ions and its antibacterial activity,” Environ. Nanotechnol. Monit. Manag., vol. 16, p. 100486, Dec. 2021, doi:10.1016/j.enmm.2021.100486.

A. Ananda et al., “Green synthesis of MgO nanoparticles using Phyllanthus emblica for Evans blue degradation and antibacterial activity,” Mater. Today Proc., vol. 49, pp. 801–810, 2022, doi: 10.1016/j.matpr.2021.05.340.

M. S. Rao and S. Singh, Nanoscience and Nanotechnology: Fundamentals to Frontiers. Hoboken, NJ, USA: Wiley, 2017.

I. Ijaz, E. Gilani, A. Nazir, and A. Bukhari, “Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles,” Green Chem. Lett. Rev., vol. 13, no. 3, pp. 223–245, Jul. 2020, doi: 10.1080/17518253.2020.1802517.

N. Patil, R. Bhaskar, V. Vyavhare, R. Dhadge, V. Khaire, and Y. Patil, “Overview on methods of synthesis of nanoparticles,” Int. J. Curr. Pharm. Res., pp. 11–16, Mar. 2021, doi:10.22159/ijcpr.2021v13i2.41556.

N. G. Manjula, G. Sarma, B. M. Shilpa, and K. Suresh Kumar, “Environmental applications of green engineered copper nanoparticles,” Phytonanotechnology, pp. 255–276, 2022, doi: 10.1007/978-981-19-4811-4_12.

P. Praveen Kumar, M. Laxmi Deepak Bhatlu, K. Sukanya, S. Karthikeyan, and N. Jayan, “Synthesis of magnesium oxide nanoparticle by eco friendly method (green synthesis)—A review,” Mater. Today: Proc., vol. 37, pp. 3028–3030, 2021, doi: 10.1016/j.matpr.2020.08.726.

M. U. Khandaker et al., “Studies of defect states and kinetic parameters of car windscreen for thermoluminescence retrospective dosimetry,” Appl. Radiat. Isot., vol. 186, p. 110271, Aug. 2022, doi: 10.1016/j.apradiso.2022.110271.

B. M. Shilpa, R. Rashmi, N. G. Manjula, and A. Sreekantha, “Bioremediation of heavy metal contaminated sites using phytogenic nanoparticles,” Phytonanotechnology, pp. 227–253, 2022, doi: 10.1007/978-981-19-4811-4_11.

M. Kursawe, R. Anselmann, V. Hilarius, and G. Pfaff, “Nano-particles by wet chemical processing in commercial applications,” J. Sol-Gel Sci. Technol., vol. 33, no. 1, pp. 71–74, Jan. 2005, doi: 10.1007/s10971-005-6702-2.

W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, “Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli,” Appl. Environ. Microbiol., vol. 74, no. 7, pp. 2171–2178, Apr. 2008, doi: 10.1128/aem.02001-07.

L. Huang, “Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger,” Chin. Sci. Bull., vol. 50, no. 6, p. 514, 2005, doi: 10.1360/04wb0075.

L. Huang, D.-Q. Li, Y.-J. Lin, M. Wei, D. G. Evans, and X. Duan, “Controllable preparation of nano-MgO and investigation of its bactericidal properties,” J. Inorg. Biochem., vol. 99, no. 5, pp. 986–993, May 2005, doi: 10.1016/j.jinorgbio.2004.12.022.

P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal oxide nanoparticles as bactericidal agents,” Langmuir, vol. 18, no. 17, pp. 6679–6686, Jul. 2002, doi: 10.1021/la0202374.

M. Fang, J. Chen, X. Xu, P. Yang, and H. Hildebrand, “Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests,” Int. J. Antimicrob. Agents, vol. 27, no. 6, pp. 513–517, Jun. 2006, doi: 10.1016/j.ijantimicag.2006.01.008.

J. Suresh, R. Yuvakkumar, M. Sundrarajan, and S. I. Hong, “Green synthesis of magnesium oxide nanoparticles,” Adv. Mater. Res., vol. 952, pp. 141–144, May 2014, doi: 10.4028/www.scientific.net/amr.952.141.

K. Ganapathi Rao, C. H. Ashok, K. Venkateswara Rao, C. H. Shilpa Chakra, and A. Akshaykranth, “Eco-friendly synthesis of MgO nanoparticles from orange fruit waste,” Int. J. Adv. Res. Phys. Sci., vol. 2, pp. 1–6, 2015.

B. Kumar et al., “Pomosynthesis and biological activity of silver nanoparticles using Passiflora tripartita fruit extracts,” Adv. Mater. Lett., vol. 6, no. 2, pp. 127–132, Feb. 2015, doi: 10.5185/amlett.2015.5697.

S. S. Salem and A. Fouda, “Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview,” Biol. Trace Elem. Res., vol. 199, no. 1, pp. 344–370, May 2020, doi: 10.1007/s12011-020-02138-3.

S. B. Mayegowda, M. Ng, S. Alghamdi, B. Atwah, Z. Alhindi, and F. Islam, “Plant-derived bioactive compounds as an antidiabetic agent,” 2022.

S. B. Mayegowda, K. Sureshkumar, R. Yashaswini, and T. Ramakrishnappa, “Phytonanotechnology for the removal of pollutants from the contaminated soil environment,” Phytonanotechnology, pp. 319–336, 2022, doi: 10.1007/978-981-19-4811-4_15.

M. S. Samuel et al., “A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications,” Catalysts, vol. 12, no. 5, p. 459, Apr. 2022, doi: 10.3390/catal12050459.

H. Wu and W. Mu, “Application prospects and opportunities of inorganic nanomaterials for enzyme immobilization in the food-processing industry,” Curr. Opin. Food Sci., vol. 47, p. 100909, Oct. 2022, doi: 10.1016/j.cofs.2022.100909.

N. J. Ugo, A. R. Ade, and A. T. Joy, “Nutrient composition of Carica papaya leaves extracts,” J. Food Sci. Nutr. Res., vol. 2, no. 3, 2019, doi: 10.26502/jfsnr.2642-11000026.

S. Ahmad et al., “Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach,” Int. J. Nanomed., vol. 14, pp. 5087–5107, Jul. 2019, doi: 10.2147/ijn.s200254.

J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J. Nanobiotechnol., vol. 16, no. 1, Oct. 2018, doi: 10.1186/s12951-018-0408-4.

A. Almontasser, A. Parveen, and A. Azam, “Synthesis, characterization and antibacterial activity of magnesium oxide (MgO) nanoparticles,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 577, no. 1, p. 012051, Nov. 2019, doi: 10.1088/1757-899x/577/1/012051.

G. Balakrishnan, R. Velavan, K. M. Batoo, and E. H. Raslan, “Microstructure, optical and photocatalytic properties of MgO nanoparticles,” Results Phys., vol. 16, p. 103013, Mar. 2020, doi: 10.1016/j.rinp.2020.103013.

A. Ansari, A. Ali, M. Asif, and S. Shamsuzzaman, “Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines,” New J. Chem., vol. 42, no. 1, pp. 184–197, 2018, doi: 10.1039/c7nj03742b.

C. Ashok, K. V. Rao, and C. S. Chakra, “Structural analysis of CuO nanomaterials prepared by novel microwave assisted method,” J. Atoms Mol., vol. 4, pp. 803–806, 2014.

M. Hosseini, A. W. H. Chin, S. Behzadinasab, L. L. M. Poon, and W. A. Ducker, “Cupric oxide coating that rapidly reduces infection by SARS-CoV-2 via solids,” ACS Appl. Mater. Interfaces, vol. 13, no. 5, pp. 5919–5928, Jan. 2021, doi: 10.1021/acsami.0c19465.

R. B. Asamoah et al., “A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites,” Adv. Mater. Sci. Eng., vol. 2020, Jan. 2020, doi: 10.1155/2020/7814324.

S. Sagadevan et al., “Effect of synthesis temperature on the morphologies, optical and electrical properties of MgO nanostructures,” J. Nanosci. Nanotechnol., vol. 20, no. 4, pp. 2488–2494, Apr. 2020, doi: 10.1166/jnn.2020.17185.

A. Lanje, S. Sharma, R. Pode, and R. Ningthoujam, “Synthesis and optical characterization of copper oxide nanoparticles,” Adv. Appl. Sci. Res., vol. 2, pp. 36–40, 2010.

R. Dobrucka, “Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties,” Iran. J. Sci. Technol. Trans. A: Sci., vol. 42, no. 2, pp. 547–555, Sep. 2016, doi: 10.1007/s40995-016-0076-x.

S. Moeini-Nodeh, M. Rahimifard, M. Baeeri, and M. Abdollahi, “Functional improvement in rats’ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways,” Biol. Trace Elem. Res., vol. 175, no. 1, pp. 146–155, May 2016, doi: 10.1007/s12011-016-0754-8.

Y. M. Siaw, J. Jeevanandam, Y. S. Hii, and Y. S. Chan, “Photo-irradiation coupled biosynthesis of magnesium oxide nanoparticles for antibacterial application,” Naunyn-Schmiedeberg’s Arch. Pharmacol., vol. 393, no. 12, pp. 2253–2264, Jul. 2020, doi: 10.1007/s00210-020-01934-x.

T. Somanathan, V. M. Krishna, V. Saravanan, R. Kumar, and R. Kumar, “MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release,” J. Nanosci. Nanotechnol., vol. 16, no. 9, pp. 9421–9431, Sep. 2016, doi: 10.1166/jnn.2016.12164.

D. Berra, S. Laouini, B. Benhaoua, M. Ouahrani, D. Berrani, and A. Rahal, “Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L leaves extract,” Dig. J. Nanomater. Biostruct., vol. 13, pp. 1231–1238, 2018.

J. Khan, M. Siddiq, B. Akram, and M. A. Ashraf, “In-situ synthesis of CuO nanoparticles in P(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications,” Arab. J. Chem., vol. 11, no. 6, pp. 897–909, Sep. 2018, doi: 10.1016/j.arabjc.2017.12.018.

R. Mahadevaiah, H. S. Lalithamba, S. Shekarappa, and R. Hanumanaika, “Synthesis of Nα-protected formamides from amino acids using MgO nano catalyst: Study of molecular docking and antibacterial activity,” Sci. Iran., Sep. 2017, doi: 10.24200/sci.2017.4491.

W. A. Khaleel, S. A. Sadeq, I. A. M. Alani, and M. H. M. Ahmed, “Magnesium oxide (MgO) thin film as saturable absorber for passively mode locked erbium-doped fiber laser,” Opt. Laser Technol., vol. 115, pp. 331–336, Jul. 2019, doi: 10.1016/j.optlastec.2019.02.042.

N. K. Nga, N. T. Thuy Chau, and P. H. Viet, “Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution,” J. Sci.: Adv. Mater. Devices, vol. 5, no. 1, pp. 65–72, Mar. 2020, doi: 10.1016/j.jsamd.2020.01.009.

A. Varughese, R. Kaur, and P. Singh, “Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 961, no. 1, p. 012011, Nov. 2020, doi: 10.1088/1757-899x/961/1/012011.

F. Amin et al., “Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities,” Evid.-Based Complement. Altern. Med., vol. 2021, pp. 1–12, Jun. 2021, doi: 10.1155/2021/5589703.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).