Rainfall Prediction Using Statistical Downscaling Based on Support Vector Machine in Selangor
How to cite (IJASEIT) :
M. H. I. Dore, “Climate change and changes in global precipitation patterns: What do we know?,” Environment International, vol. 31, no. 8, pp. 1167–1181, Oct. 2005, doi: 10.1016/j.envint.2005.03.004.
K. Thorpe, R. Greenwood, A. Eivers, and M. Rutter, “Prevalence and developmental course of ‘secret language,” International Journal of Language & Communication Disorders, vol. 36, no. 1, pp. 43–62, Jan. 2001, doi: 10.1080/13682820150217563.
R. Hock and B. Holmgren, “A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden,” Journal of Glaciology, vol. 51, no. 172, pp. 25–36, 2005, doi: 10.3189/172756505781829566.
O. Saini and S. Sharma, “A Review on Dimension Reduction Techniques in Data Mining,” Computer Engineering and Intelligent Systems, vol. 9, no. 1, pp. 7–14, 2018.
D. Zhang et al., “Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia,” Water, vol. 12, no. 11, p. 3288, Nov. 2020, doi:10.3390/w12113288.
E. Oja, “Principal components, minor components, and linear neural networks,” Neural Networks, vol. 5, no. 6, pp. 927–935, Nov. 1992, doi: 10.1016/s0893-6080(05)80089-9.
D. Berrar, "Cross-validation," Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 2nd ed., vol. 1–3, Elsevier, 2024, pp. 542–545.
M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science, vol. 349, no. 6245, pp. 255–260, 2015. doi: 10.1126/science.aaa8415.
N. L. Hadipour, M. R. Delavar, and A. M. Malekmohammadi, "A statistical scale reduction approach for geospatial data generalization," ISPRS International Journal of Geo-Information, vol. 5, no. 12, p. 221, 2016. doi: 10.3390/ijgi5120221.
N. A. F. Sulaiman, S. M. Shaharudin, S. Ismail, N. H. Zainuddin, M. L. Tan, and Y. Abd Jalil, “Predictive Modelling of Statistical Downscaling Based on Hybrid Machine Learning Model for Daily Rainfall in East-Coast Peninsular Malaysia,” Symmetry, vol. 14, no. 5, p. 927, May 2022, doi: 10.3390/sym14050927.
J. E. Wang and J. Z. Qiao, “Parameter Selection of SVR Based on Improved K-Fold Cross Validation,” Applied Mechanics and Materials, vol. 462–463, pp. 182–186, Nov. 2013, doi: 10.4028/www.scientific.net/AMM.462-463.182.
R. C. Deo, P. Samui, and D. Kim, “Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine, and multivariate adaptive regression spline models,” Stochastic Environmental Research and Risk Assessment, vol. 30, no. 6, pp. 1769–1784, Sep. 2015, doi: 10.1007/s00477-015-1153-y.
H. F. Kaiser, “The Application of Electronic Computers to Factor Analysis,” Educational and Psychological Measurement, vol. 20, no. 1, pp. 141–151, 1960, doi: 10.1177/001316446002000116.
S. M. Shaharudin, N. Ahmad, N. H. Zainuddin, and N. S. Mohamed, “Identification of rainfall patterns on hydrological simulation using robust principal component analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 11, no. 3, pp. 1162–1167, Sep. 2018, doi:10.11591/ijeecs.v11.i3.pp1162-1167.
I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150202, Apr. 2016, doi: 10.1098/rsta.2015.0202.
A. Azid et al., “Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia,” Water, Air, Soil Pollut., vol. 225, no. 8, Jul. 2014, doi: 10.1007/s11270-014-2063-1.
C. W. Liu, K. H. Lin, and Y. M. Kuo, “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan,” Science of The Total Environment, vol. 313, no. 1–3, pp. 77–89, Sep. 2003, doi: 10.1016/s0048-9697(02)00683-6.
K. K. Golnaraghi, Artificial Neural Networks in Hydrology. Springer, 2014, doi: 10.1007/978-3-642-38716-1.
M. Y. Cho and T. T. Hoang, “Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems,” Computational Intelligence and Neuroscience, vol. 2017, no. 1, pp. 1–9, 2017, doi:10.1155/2017/4135465.
A. H. Ali and M. Z. Abdullah, “An Efficient Model for Data Classification Based on SVM Grid Parameter Optimization and PSO Feature Weight Selection,” International Journal of Integrated Engineering, vol. 12, no. 1, pp. 1–12, Jan. 2020. doi:10.30880/ijie.2020.12.01.001.
H. S. Wheater, S. Mathur, and A. K. Gupta, “Application of statistical downscaling methods for climate change impact assessment in hydrology,” J. Hydrol., vol. 391, no. 1–2, pp. 1–18, 2010, doi:10.1016/j.jhydrol.2010.07.004.
M. P. Goyal and R. S. Ojha, “Downscaling of precipitation using Support Vector Machine (SVM),” Hydrol. Sci. J., vol. 57, no. 2, pp. 227–238, 2012, doi: 10.1080/02626667.2011.637042.
R. K. Mishra and R. K. Desai, “Downscaling of precipitation using support vector machine with radial basis function kernel,” Theor. Appl. Climatol., vol. 137, pp. 1769–1784, 2019, doi: 10.1007/s00704-018-2707-6.
G. Halik, N. Anwar, B. Santosa, and Edijatno, “Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models,” Advances in Civil Engineering, vol. 2015, no. 1, pp. 1–9, 2015, doi:10.1155/2015/515376.
X. Wu, H. Akbarzadeh Khorshidi, U. Aickelin, Z. Edib, and M. Peate, “Imputation techniques on missing values in breast cancer treatment and fertility data,” Health Information Science and Systems, vol. 7, no. 1, Oct. 2019, doi: 10.1007/s13755-019-0082-4.
S. Deng, L. Wang, S. Guan, M. Li, and L. Wang, “Non-parametric Nearest Neighbor Classification Based on Global Variance Difference,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Mar. 2023, doi: 10.1007/s44196-023-00200-1.
M. P. Becker, I. Yang, and K. Lange, “EM algorithms without missing data,” Statistical Methods in Medical Research, vol. 6, no. 1, pp. 38–54, Jan. 1997, doi: 10.1191/096228097677258219.
A. F. Ochoa Muñoz, V. M. Gonzalez Rojas, and C. E. Pardo Turriago, “Missing data in multiple correspondence analysis under the available data principle of the NIPALS algorithm,” DYNA, vol. 86, no. 211, pp. 249–257, Oct. 2019, doi: 10.15446/dyna.v86n211.80261.
W. Ruth, “A review of Monte Carlo-based versions of the EM algorithm,” arXiv preprint arXiv:2401.00945, 2024. [Online]. Available: https://arxiv.org/abs/2401.00945
M. Rafało, “Cross validation methods: Analysis based on diagnostics of thyroid cancer metastasis,” ICT Express, vol. 8, no. 2, pp. 183–188, Jun. 2022, doi: 10.1016/j.icte.2021.05.001.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).