An Efficient Lung Disease Classification from X-ray Image Using Graph Neural Network and Transformer
How to cite (IJASEIT) :
M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2, 2005, pp. 729–734, doi: 10.1109/ijcnn.2005.1555942.
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/tnn.2008.2005605.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., "Attention is all you need", Proc. 31st Int. Conf. Neural Information Processing Systems, pp. 6000-6010, 2017.
W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in 2023 IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2023, pp. 4172–4182, doi: 10.1109/iccv51070.2023.00387.
D. Ahmedt-Aristizabal, M. A. Armin, S. Denman, C. Fookes, and L. Petersson, “Graph-based deep learning for medical diagnosis and analysis: Past, present and future,” Sensors, vol. 21, no. 14, p. 4758, Jul. 2021, doi: 10.3390/s21144758.
L. Zhang, Y. Zhao, T. Che, S. Li, and X. Wang, “Graph neural networks for image-guided disease diagnosis: A review,” iRadiolog,vol. 1, no. 2, pp. 151–166, Jun. 2023, doi:10.1002/ird3.20.
J. Zhou et al., “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020, doi:10.1016/j.aiopen.2021.01.001.
A. Zanfei, B. M. Brentan, A. Menapace, M. Righetti, and M. Herrera, “Graph convolutional recurrent neural networks for water demand forecasting,” Water Resour. Res., vol. 58, no. 7, Jul. 2022, doi:10.1029/2022wr032299.
R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: An overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, Jun. 2018, doi: 10.1007/s13244-018-0639-9.
L. Wu et al., “Graph neural networks for natural language processing: A survey,” Found. Trends Mach. Learn., vol. 16, no. 2, pp. 119–328, 2023, doi: 10.1561/2200000096.
L. Wu, P. Cui, J. Pei, L. Zhao, and X. Guo, “Graph neural networks: Foundation, frontiers and applications,” in Proc. 29th ACM SIGKDD Conf. Knowl. Discov. Data Min., 2023, pp. 5831–5832, doi:10.1145/3580305.3599560.
S. Thirumalaisamy et al., “Breast cancer classification using synthesized deep learning model with metaheuristic optimization algorithm,” Diagnostics, vol. 13, no. 18, p. 2925, Sep. 2023, doi:10.3390/diagnostics13182925.
R.-K. Sheu and M. S. Pardeshi, “A survey on medical explainable AI (XAI): Recent progress, explainability approach, human interaction and scoring system,” Sensors, vol. 22, no. 20, p. 8068, Oct. 2022, doi:10.3390/s22208068.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.
M. Mamalakis et al., “DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays,” Comput. Med. Imaging Graph., vol. 94, p. 102008, Dec. 2021, doi: 10.1016/j.compmedimag.2021.102008.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Med. Image Comput. Comput.-Assist. Interv. (MICCAI), 2015, pp. 234–241, doi:10.1007/978-3-319-24574-4_28.
Y. Li, X. Wu, P. Yang, G. Jiang, and Y. Luo, “Machine learning for lung cancer diagnosis, treatment, and prognosis,” Genomics, Proteomics Bioinf., vol. 20, no. 5, pp. 850–866, Oct. 2022, doi:10.1016/j.gpb.2022.11.003.
J. Hanson et al., “SPOT-Disorder2: Improved protein intrinsic disorder prediction by ensembled deep learning,” Genomics, Proteomics Bioinf., vol. 17, no. 6, pp. 645–656, Dec. 2019, doi: 10.1016/j.gpb.2019.01.004.
L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv, 2017. [Online]. Available: https://arxiv.org/abs/1706.05587.
T. Dhar, N. Dey, S. Borra, and R. S. Sherratt, “Challenges of deep learning in medical image analysis—Improving explainability and trust,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 68–75, Mar. 2023, doi: 10.1109/tts.2023.3234203.
K. He et al., “Transformers in medical image analysis,” Intell. Med., vol. 3, no. 1, pp. 59–78, Feb. 2023, doi: 10.1016/j.imed.2022.07.002.
M. H. Al-Sheikh et al., “Multi-class deep learning architecture for classifying lung diseases from chest X-ray and CT images,” Sci. Rep., vol. 13, no. 1, Nov. 2023, doi: 10.1038/s41598-023-46147-3.
M. Hajij et al., “Topological deep learning: Going beyond graph data,” arXiv, 2022. [Online]. Available: https://arxiv.org/abs/2206.00606
F. J. M. Shamrat, S. Azam, A. Karim, K. Ahmed, F. M. Bui, and F. De Boer, “High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images,” Comput. Biol. Med., vol. 155, p. 106646, Mar. 2023, doi:10.1016/j.compbiomed.2023.106646.
C. Metta, A. Beretta, R. Pellungrini, S. Rinzivillo, and F. Giannotti, “Towards transparent healthcare: Advancing local explanation methods in explainable artificial intelligence,” Bioengineering, vol. 11, no. 4, p. 369, Apr. 2024, doi: 10.3390/bioengineering11040369.
J. Shi, R. Wang, Y. Zheng, Z. Jiang, H. Zhang, and L. Yu, “Cervical cell classification with graph convolutional network,” Comput. Methods Programs Biomed., vol. 198, p. 105807, Jan. 2021, doi:10.1016/j.cmpb.2020.105807.
Y. Huang et al., “Transformer-based factorized encoder for classification of pneumoconiosis on 3D CT images,” Comput. Biol. Med., vol. 150, p. 106137, Nov. 2022, doi:10.1016/j.compbiomed.2022.106137.
D. Yao et al., “A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity,” IEEE Trans. Med. Imaging, vol. 40, no. 4, pp. 1279–1289, Apr. 2021, doi: 10.1109/tmi.2021.3051604.
R. Najjar, “Redefining radiology: A review of artificial intelligence integration in medical imaging,” Diagnostics, vol. 13, no. 17, p. 2760, Aug. 2023, doi: 10.3390/diagnostics13172760.
W. Zhang et al., “HyGAnno: Hybrid graph neural network–based cell type annotation for single-cell ATAC sequencing data,” Brief. Bioinform., vol. 25, no. 3, Mar. 2024, doi: 10.1093/bib/bbae152.
F. Shamshad et al., “Transformers in medical imaging: A survey,” Med. Image Anal., vol. 88, p. 102802, Aug. 2023, doi:10.1016/j.media.2023.102802.
S. Bharati, P. Podder, and M. R. H. Mondal, “Hybrid deep learning for detecting lung diseases from X-ray images,” Inform. Med. Unlocked, vol. 20, p. 100391, 2020, doi: 10.1016/j.imu.2020.100391.
B. Hu, C. Zhou, H. Wang, and S. Chen, “Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition,” Mech. Syst. Signal Process., vol. 153, p. 107509, May 2021, doi: 10.1016/j.ymssp.2020.107509.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).