Customer Behavior Analysis for Forecasting Customer Attrition: An Artificial Intelligence Approach
How to cite (IJASEIT) :
B. R. Amin, S. Taghizadeh, M. S. Rahman, M. J. Hossain, V. Varadharajan, and Z. Chen, “Cyber attacks in smart grid–dynamic impacts, analyses and recommendations,” IET Cyber-Phys. Syst. Theory Appl., vol. 5, pp. 321–329, 2020, doi:10.1049/iet-cps.2019.0103.
F. E. Mashi, M. M. Rosli, H. Haron, W. A. Hammood, and S. A. Aliesawi, “Multi-stages of Alzheimer’s disease classification using deep learning,” in Proc. Int. Conf. Innov. Entrep. Comput. Eng. Sci. Educ. (InvENT), 2024, pp. 458–469, doi: 10.2991/978-94-6463-589-8_42.
R. Alhamad, E. Almajali, and S. Mahmoud, “Electrical reconfigurability in modern 4G, 4G/5G and 5G antennas: A critical review of polarization and frequency reconfigurable designs,” IEEE Access, vol. 11, pp. 29215–29233, 2023, doi:10.1109/access.2023.3260073.
W. A. Hammood et al., “Factors influencing the success of information systems in flood early warning and response systems context,” Telkomnika Telecommun. Comput. Electron. Control., vol. 18, no. 6, pp. 3083–3090, 2020, doi:10.12928/telkomnika.v18i6.14666.
W. A. Hammood et al., “Data analysis of an exploring the information systems success factors for early warning systems adoption,” Babylonian J. Mach. Learn., vol. 2024, pp. 102–111, 2024.
W. A. Hammood et al., “User authentication model based on mobile phone IMEI number: A proposed method application for online banking system,” in Proc. 2021 Int. Conf. Softw. Eng. Comput. Syst. (ICSECS) and 4th Int. Conf. Comput. Sci. Inf. Manage. (ICOCSIM), 2021, pp. 411–416, doi:10.1109/icsecs52883.2021.00081.
J. Lappeman, M. Franco, V. Warner, and L. Sierra-Rubia, “What social media sentiment tells us about why customers churn,” J. Consum. Mark., vol. 39, no. 5, pp. 385–403, 2022, doi:10.1108/JCM-12-2019-3540.
W. A. Hammood et al., “Determinants influencing e-payment adoption amidst COVID-19: A conceptual framework,” in Proc. 2023 7th Int. Conf. New Media Stud. (CONMEDIA), 2023, pp. 39–43, doi: 10.1109/conmedia60526.2023.10428488.
W. A. Hammood et al., “A review of user authentication model for online banking system based on mobile IMEI number,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 769, Art. no. 012061, 2020, doi:10.1088/1757-899X/769/1/012061.
M. A. Ismail, “A GPU accelerated parallel genetic algorithm for the traveling salesman problem,” J. Soft Comput. Data Min., vol. 5, pp. 137–150, 2024, doi: 10.15199/48.2024.01.21.
N. F. Idris and M. A. Ismail, “A review of homogenous ensemble methods on the classification of breast cancer data,” Prz. Elektrotech., vol. 2024, 2024, doi: 10.15199/48.2024.01.21.
S. W. Fujo, S. Subramanian, M. A. Khder et al., “Customer churn prediction in telecommunication industry using deep learning,” Inf. Sci. Lett., vol. 11, no. 1, p. 24, 2022, doi:10.18576/isl/110120.
T. A. Tang et al., “DeepIDS: Deep learning approach for intrusion detection in software defined networking,” Electronics, vol. 9, Art. no. 1533, 2020, doi: 10.3390/electronics9091533.
W. A. Hammood, A. Aminuddin, O. A. Hammood, K. H. Abdullah, D. Sofyan, and M. Rahardi, “Conceptual model of internet banking adoption with perceived risk and trust factors,” Telkomnika Telecommun. Comput. Electron. Control., vol. 21, no. 5, pp. 1013–1019, 2023, doi:10.12928/telkomnika.v21i5.24581.
J. Watson-Daniels et al., “Predictive churn with the set of good models,” arXiv Prepr., arXiv:2402.07745, 2024, doi:10.48550/arXiv.2402.07745.
M. BinJubier, M. A. Ismail, M. Othman, S. Kasim, and H. Amnur, “Optimizing genetic algorithm by implementation of an enhanced selection operator,” JOIV Int. J. Inform. Vis., vol. 8, no. 3–2, pp. 1643–1650, 2024, doi: 10.62527/joiv.8.3-2.3449.
M. Dzulkurnain, A. Aminuddin, W. Hammood, K. Abdullah, and M. A. Miah, “Optimizing students’ practical skills through project-based learning: Case study in vocational high schools,” Int. J. Eval. Res. Educ., vol. 13, no. 5, p. 3151, 2024, doi:10.11591/ijere.v13i5.28694.
N. N. M. Azam, M. A. Ismail, M. S. Mohamad, A. O. Ibrahim, and S. Jeba, “Classification of COVID-19 symptoms using multilayer perceptron,” Iraqi J. Comput. Sci. Math., vol. 4, no. 4, pp. 100–110, 2023, doi: 10.52866/ijcsm.2023.04.04.009.
Y. Suh, “Machine learning based customer churn prediction in home appliance rental business,” J. Big Data, vol. 10, Art. no. 41, 2023, doi:10.1186/s40537-023-00721-8.
A. M. Hasan, N. M. Noor, T. H. Rassem, A. M. Hasan, and W. A. Hammood, “A combined weighting for the feature-based method on topological parameters in semantic taxonomy using social media,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 769, Art. no. 012002, 2020, doi:10.1088/1757-899X/769/1/012002.
W. A. Hammood, R. A. Arshah, S. M. Asmara, H. Al Halbusi, O. A. Hammood, and S. Al Abri, “A systematic review on flood early warning and response system (FEWRS): A deep review and analysis,” Sustainability, vol. 13, Art. no. 440, 2021, doi:10.3390/su13010440.
H. Farman, S. R. Talpur, U. Amjad, G. Shankar, U. E. Laila, and L. Naseem, “Leveraging machine learning and deep learning models for proactive churn customer retention,” VFAST Trans. Softw. Eng., vol. 12, no. 4, pp. 70–86, 2024, doi:10.21015/vtse.v12i4.1928.
R. Liu et al., “An intelligent hybrid scheme for customer churn prediction integrating clustering and classification algorithms,” Appl. Sci., vol. 12, Art. no. 9355, 2022, doi:10.3390/app12189355.
T. Kimura, “Customer churn prediction with hybrid resampling and ensemble learning,” J. Manage. Inf. Decis. Sci., vol. 25, no. 1, pp. 1–23, 2022.
A. Dingli et al., “Comparison of deep learning algorithms to predict customer churn within a local retail industry,” Int. J. Mach. Learn. Comput., vol. 7, no. 5, pp. 128–132, 2017, doi:10.18178/ijmlc.2017.7.5.634.
N. Alboukaey et al., “Dynamic behavior based churn prediction in mobile telecom,” Expert Syst. Appl., vol. 162, Art. no. 113779, 2020, doi: 10.1016/j.eswa.2020.113779.
N. S. Nordin and M. A. Ismail, “A hybridization of butterfly optimization algorithm and harmony search for fuzzy modelling in phishing attack detection,” Neural Comput. Appl., vol. 35, no. 7, pp. 5501–5512, 2023, doi: 10.1007/s00521-022-07957-0.
A. Cucus, W. P. Sari, A. Aminuddin, D. I. S. Saputra, W. A. Hammood, and R. F. A. Aziza, “Systematic review of IT risk management using a scientometric approach,” in Proc. 2023 6th Int. Conf. Inf. Commun. Technol. (ICOIACT), Yogyakarta, Indonesia, Nov. 2023, pp. 126–131, doi:10.1109/icoiact59844.2023.10455938.
O. A. Nizam, M. Nafaa, and W. A. Hammood, “RESP: Relay suitability-based routing protocol for video streaming in vehicular ad hoc networks,” Int. J. Comput. Commun. Control, vol. 14, no. 1, pp. 21–38, 2019, doi: 10.15837/ijccc.2019.1.3211.
R. A. Arshah, W. A. Hammood, and A. Kamaludin, “An integrated flood warning and response model for effective flood disaster mitigation management,” Adv. Sci. Lett., vol. 24, no. 10, pp. 7819–7823, 2018, doi: 10.1166/asl.2018.13024.
K. R. Awad, M. K. Obed, and M. K. Abed, “The analysis of the effect of information technology on the economic growth in Iraq (2006–2018),” in Proc. 2020 2nd Annu. Int. Conf. Inf. Sci. (AiCIS), Fallujah, Iraq, Nov. 2020, pp. 183–190, doi:10.1109/AiCIS51645.2020.00038.
Y. M. Al-Sabaawe, W. A. Husien, and A. A. Hammadi, “Three phases strategy of electronic management application: A proposed model,” in Proc. 2020 2nd Annu. Int. Conf. Inf. Sci. (AiCIS), Fallujah, Iraq, Nov. 2020, pp. 148–156, doi:10.1109/AiCIS51645.2020.00033.
K. H. Abdullah, F. S. Abd Aziz, R. Dani, W. A. Hammood, and E. Setiawan, “Urban pollution: A bibliometric review,” ASM Sci. J., vol. 18, 2023, doi: 10.32802/asmscj.2023.1440.
O. A. Hammood, M. N. M. Kahar, W. A. Hammood, R. A. Hasan, M. A. Mohammed, A. A. Yoob, and T. Sutikno, “An effective transmit packet coding with trust-based relay nodes in VANETs,” Bull. Electr. Eng. Inform., vol. 9, no. 2, pp. 685–697, 2020, doi:10.11591/eei.v9i2.1653.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).