Rapid Detection of Escherchia coli and Salmonella Typhimurium Using Lab-Made Electronic Nose Coupled with Chemometric Tools
How to cite (IJASEIT) :
C. Viet, M. Nguyet, T. Nguyen, M. Hanh, T. Truong, and X. Dong, “Screening for Optimal Parameters of Nattokinase Synthesis by Bacillus subtilis natto in Solid-State Fermentation,” vol. 10, no. 3, pp. 1207-1213, 2020.
S. L. Percival and D. W. Williams, Escherichia coli, Second Edi. Elsevier, 2013.
J. A. Crump and J. Wain, Salmonella, Third Edit. Elsevier Inc., 2016.
F. Fung, H. S. Wang, and S. Menon, “Food safety in the 21st century,” Biomed. J., vol. 41, no. 2, pp. 88-95, 2018, doi: 10.1016/j.bj.2018.03.003.
M. K. Sharif, K. Javed, and A. Nasir, Foodborne Illness: Threats and Control, vol. 15. Elsevier Inc., 2018.
M. Falasconi, I. Concina, E. Gobbi, V. Sberveglieri, A. Pulvirenti, and G. Sberveglieri, “Electronic Nose for Microbiological Quality Control of Food Products,” Int. J. Electrochem., vol. 2012, pp. 1-12, 2012, doi: 10.1155/2012/715763.
J. M. Cevallos-Cevallos, M. D. Danyluk, and J. I. Reyes-De-Corcuera, “GC-MS Based Metabolomics for Rapid Simultaneous Detection of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella muenchen, and Salmonella hartford in Ground Beef and Chicken,” J. Food Sci., vol. 76, no. 4, pp. 238-246, 2011, doi: 10.1111/j.1750-3841.2011.02132.x.
Y. X. Yu and Y. Zhao, “Electronic Nose Integrated with Chemometrics for Rapid Identification of Foodborne Pathogen,” Chemom. Pract. Appl., 2012, doi: 10.5772/32099.
E. Tait, J. D. Perry, S. P. Stanforth, and J. R. Dean, “Identification of Volatile Organic Compounds Produced by Bacteria Using HS-SPME-GC-MS,” J. Chromatogr. Sci., vol. 52, no. 4, pp. 363-373, 2014, doi: 10.1093/chromsci/bmt042.
A. P. F. Turner and N. Magan., “Electronic Noses and Disease Diagnostics : Nature Reviews,” Microbiol. (Nature Rev., vol. 2, no. February, pp. 1-7, 2004, doi: 10.1038/nrmicro823.
X. Tian, J. Wang, and S. Cui, “Analysis of Pork Adulteration in Minced Mutton Using Electronic Nose of Metal Oxide Sensors,” J. Food Eng., vol. 119, no. 4, pp. 744-749, 2013, doi: 10.1016/j.jfoodeng.2013.07.004.
J. Carrillo and C. Durí¡n, “Fast identification of Bacteria for Quality Control of Drinking Water through A Static Headspace Sampler Coupled to a Sensory Perception System,” Biosensors, vol. 9, no. 1, p. 23, 2019, doi: 10.3390/bios9010023.
M. R. Cavallari et al., “A hybrid electronic nose and tongue for the detection of ketones : Improved sensor orthogonality using graphene oxide-based detectors,” no. CVD, 2017, doi: 10.1109/JSEN.2017.2661067.
J. Fitzgerald and H. Fenniri, “Cutting edge methods for non-invasive disease diagnosis using e-tongue and e-nose devices,” Biosensors, vol. 7, no. 4, 2017, doi: 10.3390/bios7040059.
J. A. Covington, E. W. Westenbrink, N. Ouaret, R. Harbord, K. D. Bardhan, and R. P. Arasaradnam, “Application of a Novel Tool for Diagnosing Bile Acid Diarrhoea,” pp. 11899-11912, 2013, doi: 10.3390/s130911899.
P. F. Astantri, W. S. A. Prakoso, K. Triyana, T. Untari, C. M. Airin, and P. Astuti, “Lab-made electronic nose for fast detection of Listeria monocytogenes and bacillus cereus,” Vet. Sci., vol. 7, no. 1, pp. 1-11, 2020, doi: 10.3390/vetsci7010020.
U. Siripatrawan, “Rapid Differentiation between E. coli and Salmonella Typhimurium Using Metal Oxide Sensors Integrated with Pattern Recognition,” Sensors Actuators, B Chem., vol. 133, no. 2, pp. 414-419, 2008, doi: 10.1016/j.snb.2008.02.046.
G. C. Green, A. D. C. Chan, H. Dan, and M. Lin, “Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension,” Sensors Actuators, B Chem., vol. 152, no. 1, pp. 21-28, 2011, doi: 10.1016/j.snb.2010.09.062.
S. Balasubramanian, S. Panigrahi, C. M. Logue, H. Gu, and M. Marchello, “Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification,” J. Food Eng., vol. 91, no. 1, pp. 91-98, 2009, doi: 10.1016/j.jfoodeng.2008.08.008.
I. A. Casalinuovo, D. Di Pierro, M. Coletta, and P. Di Francesco, “Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection,” pp. 1428-1439, 2006.
J. Yan et al., “Electronic nose feature extraction methods: A review,” Sensors (Switzerland), vol. 15, no. 11, pp. 27804-27831, 2015, doi: 10.3390/s151127804.
S. N. Hidayat et al., “The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ,” Chemosensors, vol. 7, no. 3, p. 29, Jul. 2019, doi: 10.3390/chemosensors7030029.
S. N. Hidayat and K. Triyana, “Optimized Back-Propagation Combined with Radial Basic Neural Network for Improving Performance of the Electronic Nose : Case Study on the Fermentation Process of Tempeh,” vol. 1755, pp. 7-11, 2016, doi: 10.1063/1.4958466.
K. Triyana, M. Taukhid Subekti, P. Aji, S. Nur Hidayat, and A. Rohman, “Development of Electronic Nose with Low-Cost Dynamic Headspace for Classifying Vegetable Oils and Animal Fats,” Appl. Mech. Mater., vol. 771, pp. 50-54, 2015, doi: 10.4028/www.scientific.net/amm.771.50.
S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, and M. Marchello, “Neural-Network-Integrated Electronic Nose System for Identification of Spoiled Beef,” LWT - Food Sci. Technol., vol. 39, no. 2, pp. 135-145, 2006, doi: 10.1016/j.lwt.2005.01.002.
H. Elgaali, T. R. Hamilton-Kemp, M. C. Newman, R. W. Collins, K. Yu, and D. D. Archbold, “Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria,” J. Basic Microbiol., vol. 42, no. 6, pp. 373-380, 2002, doi: 10.1002/1521-4028(200212)42:6<373::AID-JOBM373>3.0.CO;2-4.
N. Karami et al., “Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry,” F1000Research, vol. 6, no. 0, p. 1415, 2018, doi: 10.12688/f1000research.12003.3.
U. Siripatrawan and B. R. Harte, “Solid phase microextraction/gas chromatography/mass spectrometry integrated with chemometrics for detection of Salmonella typhimurium contamination in a packaged fresh vegetable,” Anal. Chim. Acta, vol. 581, no. 1, pp. 63-70, 2007, doi: 10.1016/j.aca.2006.08.007.
K. P. Talaro and B. Chess, Foundations in Microbiology, 8th ed. New York: McGraw-Hill Companies, Inc, 2012.
H. H. Nguyen, S. Y. Yi, A. Woubit, and M. Kim, “A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium,” Appl. Sci. Converg. Technol., vol. 25, no. 3, pp. 61-65, 2016, doi: 10.5757/asct.2016.25.3.61.
A. T. Arfao, C. L. Djimeli, O. V. N. Ewoti, M. Nola, and T. Sime-ngando, “Detachment of adhered enteropathogenic Escherichia coli cells from polythene fragments immersed in aquatic microcosm using Eucalyptus microcorys extract ( Myrtaceae ),” no. May 2016, 2017.
I. Tazi, K. Triyana, D. Siswanta, A. C. A. Veloso, A. M. Peres, and L. G. Dias, “Dairy Products Discrimination According to the Milk Type Using an Electrochemical Multisensor Device Coupled with Chemometric Tools,” J. Food Meas. Charact., vol. 12, no. 4, pp. 2385-2393, 2018, doi: 10.1007/s11694-018-9855-8.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).