Landslide and Environmental Risk from Oil Spill due to the Rupture of SOTE and OCP Pipelines, San Rafael Falls, Amazon Basin, Ecuador

Paulina Poma (1), Marco Usca (2), Maria Fdz-Polanco (3), Alondra Garcia-Villacres (4), Theofilos Toulkeridis (5)
(1) Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47013, Spain
(2) Department of GeoInformatics - Z_GIS, University of Salzburg, Salzburg, 56479, Austria
(3) Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47013, Spain
(4) Department of Geography, University of Toronto, Toronto, M5S, Canada
(5) Department of Earth Sciences and Construction, University of the Armed Forces, Sangolqui, 171101, Ecuador
Fulltext View | Download
How to cite (IJASEIT) :
Poma, Paulina, et al. “Landslide and Environmental Risk from Oil Spill Due to the Rupture of SOTE and OCP Pipelines, San Rafael Falls, Amazon Basin, Ecuador”. International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 4, Aug. 2021, pp. 1558-66, doi:10.18517/ijaseit.11.4.13727.
A landslide generated an environmental risk due to a provoked oil spill on April 7, 2020, with the SOTE and OCP pipelines rupture. This research aims to determine the areas susceptible to landslides in the river basin Quijos of the Coca River and estimate the environmental risk from exposure to the oil spill. A water analysis of the Coca River was performed by using the Mora-Vahrson method and GIS tools. The subsequent water sampling was probabilistic in a simple random way, and the analyzed parameters were oils and grease, Ba, Cd, Cr, BOD, COD, TPH, OD, Pb, and SST. The results show that 61.17% (572.68 km2) of the total studied area (936.19 km2) is susceptible to landslide hazards. In detail, 0.25% (2.34 km2) of the area is considered to be of very high susceptibility, 26.72% (250.12 km2) of high susceptibility, 11.82% (110.66 km2) of moderate susceptibility, and 0.04 (0.37 km2) of low susceptibility. Four of them were within the permissible limits from the ten analyzed parameters, which correspond to Ba with 0.70 mg/L, OD with 7.4% of saturation, BOD5 with 2 mg/L, and COD with 25 mg/L. The other six parameters, including oils and fats, exhibited a significant increase in concentrations after the oil spill, yielding Cd 0.05 mg/L, total Cr 0.45 mg/L, TPH 0.20 mg/L, Pb 0.20 mg/L, and SST 20%. These results are outside the permissible limits, meaning that the river waters are contaminated.

J. Johnston, E. Lim, and H. Roh, “Impact of upstream oil extraction and environmental public health: A review of the evidence,” Sci. Total Environ., vol. 657, pp. 187-199, 2019, doi: 10.1016/j.scitotenv.2018.11.483.

E. Bilbao et al., “Effects of exposure to Prestige-like heavy fuel oil and to perfluorooctane sulfonate on conventional biomarkers and target gene transcription in the thicklip grey mullet Chelon labrosus,” Aquat. Toxicol., vol. 98, no. 3, pp. 282-296, 2010, doi: 10.1016/j.aquatox.2010.02.018.

M. Corral, E. P. Vergara, N. Barragí¡n, and M. Lacarra, “Estudio De Dispersión De Hidrocarburos En Medio Marino,” XVI Congr. Int. Ing. Proy. Val. 11-13 julio 2012, pp. 11-13, 2012.

M. F. Serrano Guzmí¡n, L. M. Torrado Gómez, and D. D. Pí©rez Ruiz, “Impacto de los derrames de crudo en las propiedades mecí¡nicas de suelos arenosos,” Rev. Cientí­fica Gen. Josí© Marí­a Córdova, vol. 11, no. 12, p. 233, 2013, doi: 10.21830/19006586.195.

A. S. Johnson, A. Baker, and L. Bruer, “Interdependence, garbage dumping, and feral dogs: Exploring three lifeworld resources of young children in a rural school,” Early Child. Educ. J., vol. 34, no. 6, pp. 371-377, 2007, doi: 10.1007/s10643-007-0160-0.

M. San Sebastií¡n and A. K. Hurtig, “Oil exploitation in the Amazon basin of Ecuador: A public health emergency,” Rev. Panam. Salud Publica/Pan Am. J. Public Heal., vol. 15, no. 3, pp. 205-211, 2004, doi: 10.1590/S1020-49892004000300014.

M. Cepek, “The Loss of Oil: Constituting Disaster in Amazonian Ecuador,” J. Lat. Am. Caribb. Anthropol., vol. 17, no. 3, pp. 393-412, 2012, doi: 10.1111/j.1935-4940.2012.01250.x.

T. Toulkeridis et al., “Two independent real-time precursors of the 7.8 Mw earthquake in Ecuador based on radioactive and geodetic processes—Powerful tools for an early warning system,” J. Geodyn., vol. 126, no. September 2018, pp. 12-22, 2019, doi: 10.1016/j.jog.2019.03.003.

R. L. Schuster, A. S. Nieto, T. D. O’Rourke, E. Crespo, and G. Plaza-Nieto, “Mass wasting triggered by the March 5 1987 Ecuador earthquakes,” Eng. Geol., vol. 42, no. 1, pp. 1-23, 1996, doi: 10.1016/0013-7952(95)00024-0.

F. Ayala and O. Carcedo, “Riesgos naturales,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689-1699, 2019, doi: 10.1017/CBO9781107415324.004.

S. Biass, C. Frischknecht, and C. Bonadonna, “A fast GIS-based risk assessment for tephra fallout: The example of Cotopaxi volcano, Ecuador-Part II: Vulnerability and risk assessment,” Nat. Hazards, vol. 64, no. 1, pp. 615-639, 2012, doi: 10.1007/s11069-012-0270-x.

T. Toulkeridis and I. Zach, “Wind directions of volcanic ash-charged clouds in Ecuador-implications for the public and flight safety,” Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 242-256, 2017, doi: 10.1080/19475705.2016.1199445.

M. Bernabí© et al., Amenazas de origen Natural y Gestión de Riesgo en el Ecuador I, Lic. David. Quito, 214AD.

M. Useda, “Ruptura de oleoductos por interferencia externa, daño ambiental y sostenibilidad en Colombia,” Prod. y Limpia, vol. 13, no. 2, pp. 7-13, 2018, doi: 10.22507/pml.v13n2a1.

J. Durango, M. Saqalli, C. Laplanche, M. Locquet, and A. Elger, “Spatial analysis of accidental oil spills using heterogeneous data: A case study from the North-Eastern Ecuadorian Amazon,” Sustain., vol. 10, no. 12, 2018, doi: 10.3390/su10124719.

S. Becerra, E.Paichard, A. Sturma, and L. M. 4, “Vivir con la contaminación petrolera en el Ecuador: percepciónes sociales del riesgo sanitario y capacidad de respuesta.,” Rev. Lider, vol. 23, pp. 102-120, 2013.

P. Danilo et al., “Cartografí­a Aplicada Al Control Ambiental En Derrames De Hidrocarburos.,” Axioma, vol. 1, no. 21, pp. 22-35, 2019, doi: 10.26621/xv21.2019.12.a02.pucesi.2550.6684.

F. Gaspari, A. Rodriguez, M. Delgado, G. Senisterra, and G. Denegri, “Vulnerabilidad ambiental en cuencas hidrogrí¡ficas serranas mediante SIG,” Multequina, vol. 20, no. 20, pp. 3-13, 2011.

G. Segura, E. Badilla, and L. Obando, “Susceptibilidad al Deslizamiento en el Corredor Siquirres-Turrialba,” Rev. Geológica Am. Cent., vol. 45, pp. 101-121, 2011.

M. Niño, M. A. Jaimes, and E. Reinoso, “Seismic-event-based methodology to obtain earthquake-induced translational landslide regional hazard maps,” Nat. Hazards, vol. 73, no. 3, pp. 1697-1713, 2014, doi: 10.1007/s11069-014-1163-y.

D. ívila, “Estimación de la susceptibilidad a deslizamientos en la región sur-este de la Reserva Biológica Montecillos a traví©s del mí©todo Mora-Vahrson,” J. Petrol., vol. 369, no. 1, pp. 1689-1699, 2013, doi: 10.1017/CBO9781107415324.004.

T. Toulkeridis et al., “Evaluation of the initial stage of the reactivated Cotopaxi volcano - Analysis of the first ejected fine-grained material,” Nat. Hazards Earth Syst. Sci., vol. 3, no. 11, pp. 6947-6976, 2015, doi: 10.5194/nhessd-3-6947-2015.

S. Mora and W.-G. Vahrson, “Macrozonation Methodology for Landslide Hazard Determination,” Assoc. Eng. Geol., vol. xxxi, no. 1, pp. 49-58, 1994, doi: 10.2113/gseegeosci.xxxi.1.49.

O. Leguizamón, E. López, and L. Chí­as, “Evaluación cartogrí¡fica de la vulnerabilidad frente a derrames de hidrocarburos en ductos . Consecuencias ambientales y sociales,” Investig. Geogrí¡ficas, vol. 1-18, no. 101, 2020, doi: DOI: dx.doi.org/10.14350/rig.59851 ”¢.

A. Quesada and S. Feoli, “Comparación de la Metodologí­a Mora-Vahrson y el Mí©todo Morfomí©trico para Determinar íreas Susceptibles a Deslizamientos en la Microcuenca del Rí­o Macho, Costa Rica,” Rev. Geogrí¡fica Amí©rica Cent., vol. 1, no. 60, pp. 17-45, 2018, doi: 10.15359/rgac.61-2.1.

P. Ordóñez, “Cartografí­a Aplicada Al Control Ambiental En Derrames De Hidrocarburos.,” Axioma, vol. 1, no. 21, pp. 22-35, 2019, doi: 10.26621/xv21.2019.12.a02.pucesi.2550.6684.

M. Viladrich and G. Theodore, “The oil spill process: The effect of coast guard monitoring on oil spills,” Environ. Resour. Econ., vol. 10, no. 4, pp. 315-339, 1997, doi: 10.1023/A:1018343600621.

H. S. Mayorga and J. L. Rivera, “Environmental Risks for Oil Spills in Northeastern Ecuador using GIS: Response Times and Vulnerable Areas,” Rev. Polití©cnica, vol. 41, no. 2, pp. 7-14, 2018, doi: 10.33333/rp.v41i2.923.

L. Hermosa, M. Avilí©s, O. Almeida, and M. Cruz, “Aní¡lisis y modelamiento de susceptibilidad a deslizamientos mediante SIG y geoestadí­stica en las Parroquias de Papallacta y Cuyuja, Cantón Quijos (Ecuador),” Posgrados UNAH, vol. II, no. 4, pp. 486-494, 2011.

S. Mazumdar, D. Ghose, and G. K. Saha, “Foraging strategies of black kites (Milvus migrans govinda) in urban garbage dumps,” J. Ethol., vol. 34, no. 3, pp. 243-247, 2016, doi: 10.1007/s10164-016-0469-5.

S. Constantin, T. Toulkeridis, O. T. Moldovan, M. Villací­s, and A. Addison, “Caves and karst of Ecuador-state-of-the-art and research perspectives,” Phys. Geogr., vol. 40, no. 1, pp. 28-51, 2019, doi: 10.1080/02723646.2018.1461496.

S. I. Muñoz, A. Bocio, T. M. B. Trevilato, A. M. M. Takayanagui, and J. L. Domingo, “Metal concentrations in soil in the vicinity of a municipal solid waste landfill with a deactivated medical waste incineration plant, Ribeirí£o Preto, Brazil,” Bull. Environ. Contam. Toxicol., vol. 73, no. 3, pp. 575-582, 2004, doi: 10.1007/s00128-004-0467-0.

G. Barrantes, O. Barrantes, and O. Níºñez, “Efectividad De La Metodologí­a Mora- Deslizamientos Provocados Por El Terremoto De Cinchona , Costa Rica,” Rev. Geogrí¡fica Amí©rica Cent., vol. 2, no. 47, pp. 141-162, 2011.

M. J. Salamanca, N. Jimí©nez-Tenorio, M. L. Gonzalez de Canales, and T. A. DelValls, “Evaluation of the toxicity of an oil spill conducted through bioassays using the fish Solea senegalensis,” Ciencias Mar., vol. 34, no. 3, pp. 339-348, 2008, doi: 10.7773/cm.v34i3.1403.

S. Pabón, A. Sarria, and J. Gallo, “Contaminación del agua por metales pesados, mí©todos de aní¡lisis y tecnologí­as de remoción. Una revisión 1,” Entre Cienc. e Ing., vol. 14, no. 27, pp. 9-18, 2020, doi: https://doi.org/10.31908/19098367.1734.

A. J. Posner and K. P. Georgakakos, “Normalized Landslide Index Method for susceptibility map development in El Salvador,” Nat. Hazards, vol. 79, no. 3, pp. 1825-1845, 2015, doi: 10.1007/s11069-015-1930-4.

F. Acosta, M. Campos, B. Gutií©rrez, and J. Acosta, “Estudio de riesgo geológico sobre plataforma SIG. aní¡lisis de susceptibilidad a deslizamientos de tierra en la provincia artemisa, Cuba.,” XI Congr. Cuba. Inform. y Geociencias, p. 10, 2013.

S. Represa, D. Mellado, L. Bali, L. Colman, Y. Sí¡nchez, and A. Porta, “Aplicación de tecnologí­as de sistemas de información geogrpaficas(SIG) para,” Assoc. Bras. Geol. Eng. e Ambient., pp. 1-6, 2016.

V. Catania, F. Lopresti, S. Cappello, R. Scaffaro, and P. Quatrini, “Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water,” N. Biotechnol., vol. 58, no. April, pp. 25-31, 2020, doi: 10.1016/j.nbt.2020.04.001.

F. Murillo, M. Rossi, F. Ardizzone, F. Fiorucci, and I. Alcí¡ntara, “Hazard and population vulnerability analysis: a step towards landslide risk assessment,” J. Mt. Sci., vol. 14, no. 7, pp. 1241-1261, 2017, doi: 10.1007/s11629-016-4179-9.

E. Nyankson, D. Rodene, and R. Gupta, “Advancements in Crude Oil Spill Remediation Research after the Deepwater Horizon Oil Spill,” Water. Air. Soil Pollut., vol. 227, no. 1, pp. 2-22, 2016, doi: 10.1007/s11270-015-2727-5.

X. Ye, B. Chen, K. Lee, R. Storesund, and B. Zhang, “An integrated offshore oil spill response decision making approach by human factor analysis and fuzzy preference evaluation,” Environ. Pollut., vol. 262, p. 114294, 2020, doi: 10.1016/j.envpol.2020.114294.

M. Goodchild and R. P. Haining, “GIS and spatial data analysis: Converging perspectives,” Pap. Reg. Sci., vol. 83, no. 1, pp. 363-385, 2004, doi: 10.1007/s10110-003-0190-y.

R. Montes, “Efecto ecotoxicologico del petróleo crudo sobre el primer estadio de emerita analoga stimpson, 1857 (decí¡poda: anomura),” Biol., vol. 6, no. 2, pp. 101-111, 2008.

F. Lu, G. Valdivia, and N. Silva, Oil, Revolution, and Indigenous Citizenship in Ecuadorian Amazonia. New York, 2017.

A. Sepp, N. Pinardi, and F. Martins, “IT-OSRA: applying ensemble simulations to estimate the oil spill risk associated to operational and accidental oil spills,” Ocean Dyn., vol. 66, no. 8, pp. 939-954, 2016, doi: 10.1007/s10236-016-0960-0.

D. Murphy, X. Xue, K. Sampath, and J. Katz, “Crude oil jets in crossflow: Effects of dispersant concentration on plume behavior,” J. Geophys. Res. Ocean., vol. 121, no. 9, pp. 6762-6778, 2016, doi: 10.1002/2016JC012132.Received.

V. R. N. Cruvinel et al., “Health conditions and occupational risks in a novel group: Waste pickers in the largest open garbage dump in Latin America,” BMC Public Health, vol. 19, no. 1, pp. 1-15, 2019, doi: 10.1186/s12889-019-6879-x.

D. López and J. Luyando, “The effects of oil pollution in the development of Ejidal Communities: the case of the San Juan river basin (Nuevo León, Mexico),” Investig. Desarro., vol. 26, no. 1, pp. 92-124, 2018, doi: 10.14482/indes.26.1.9918.

L. Cai, L. Yan, J. Ni, and C. Wang, “Assessment of ecological vulnerability under oil spill stress,” Sustain., vol. 7, no. 10, pp. 13073-13084, 2015, doi: 10.3390/su71013073.

J. Araujo, F. Yegres, A. Angel, B. Depool, and Y. Rojas, “Biocatalizadores fíºngicos hidrocarbonoclí¡sticos del genero Aspergillus para la descontaminación de agua con Hidrocarburos Policí­clicos Aromí¡ticos (HPAs),” Rev. Cuba. Quí­mica, vol. 28, no. 2, pp. 703-735, 2016.

T. Nordam, S. Lofthus, and O. G. Brakstad, “Modelling biodegradation of crude oil components at low temperatures,” Chemosphere, vol. 254, pp. 0-3, 2020, doi: 10.1016/j.chemosphere.2020.126836.

í–. í–zden, N. Erkan, M. Kaplan, and F. S. Karakulak, “Toxic Metals and Omega-3 Fatty Acids of Bluefin Tuna from Aquaculture: Health Risk and Benefits,” Expo. Heal., vol. 12, no. 1, pp. 9-18, 2020, doi: 10.1007/s12403-018-0279-9.

J. Navarro, A. Aguilar, and J. López, “Aspectos bioquí­micos y gení©ticos de la tolerancia y acumulación de metales pesados en plantas,” Ecosistemas, vol. 16, no. 2, pp. 1-9, 2007, doi: 10.7818/re.2014.16-2.00.

M. San Sebastií¡n, B. Armstrong, J. A. Córdoba, and C. Stephens, “Exposures and cancer incidence near oil fields in the Amazon basin of Ecuador,” Occup. Environ. Med., vol. 58, no. 8, pp. 517-522, 2001, doi: 10.1136/oem.58.8.517.

L. Londoño, P. Londoño, and F. Muñoz, “Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal,” Biotecnoloí­a en el Sect. Agropecu. y Agroindustrial, vol. 14, no. 2, p. 145, 2016, doi: 10.18684/bsaa(14)145-153.

M. Silva, S. Loureiro, M. Reis, M. Da Rosa, and J. Nilin, “Toxicity of a mixture of monoaromatic hydrocarbons (BTX) to a tropical marine microcrustacean,” Mar. Pollut. Bull., vol. 156, no. April, p. 111272, 2020, doi: 10.1016/j.marpolbul.2020.111272.

P. Lopes, A. Northcross, M. Gomes, and R. Franco, “The crude oil spill on the Brazilian coast in 2019: the question of public health emergency,” 2020. doi: 10.1590/0102-311X00231019.

C. O’Callaghan, M. Orta, and M. Kogevinas, “Health effects of non-occupational exposure to oil extraction,” Environ. Heal. A Glob. Access Sci. Source, vol. 15, no. 1, pp. 1-4, 2016, doi: 10.1186/s12940-016-0140-1.

F. Fiorucci et al., “Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images,” Geomorphology, vol. 129, no. 1-2, pp. 59-70, 2011, doi: 10.1016/j.geomorph.2011.01.013.

W. M. Abdulwahid and B. Pradhan, “Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR),” Landslides, vol. 14, no. 3, pp. 1057-1076, 2017, doi: 10.1007/s10346-016-0744-0.

F. C. Dai, C. F. Lee, and Y. Y. Ngai, “Landslide risk assessment and management: An overview,” Eng. Geol., vol. 64, no. 1, pp. 65-87, 2002, doi: 10.1016/S0013-7952(01)00093-X.

T. Toulkeridis et al., “Causes and consequences of the sinkhole at El Trí©bol of Quito, Ecuador - Implications for economic damage and risk assessment,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 9, pp. 2031-2041, 2016, doi: 10.5194/nhess-16-2031-2016.

A. V Vaca et al., “Characterization of Fine-grained Material Ejected by the Cotopaxi Volcano Employing X-ray Diffraction and Electron Diffraction Scattering Techniques,” Biol. Med., no. August 2015, pp. 2015-2017, 2016, doi: 10.4172/0974-8369.1000280.

F. Rodriguez and T. Toulkeridis, “Economic risk assessment of Cotopaxi volcano , Ecuador , in case of a future lahar emplacement,” Nat. Hazards, 2016, doi: 10.1007/s11069-016-2589-1.

J. Celorio, J. Garcí­a, A. Guerra, A. Barragan, and T. T. Toulkeridis, “Aní¡lisis de la Vulnerabilidad por Tsunamis en Crucita, Ecuador,” Rev. Ciencias Segur. y Def., vol. III, no. 1, pp. 57-102, 2018.

T. Toulkeridis, E. Tamayo, D. Simón-baile, D. F. Reyes-yunga, M. Viera-torres, and M. Heredia, “Cambio climí¡tico segíºn los acadí©micos Ecuatorianos -Percepciones Versus Hechos,” La granja, vol. 31, no. 1, pp. 21-46, 2020, doi: 10.17163/lgr.n31.2020.02.

F. Mato and T. Toulkeridis, “The Missing Link in El Niño’s Phenomenon Generation,” Sci. Tsunami Hazards, vol. 36, no. 3, pp. 128-144, 2017.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).