Temporal and Spatial Evaluations of Extreme Rainfall Relationship with Daily Surface Air Temperature in Peninsular Malaysia

Saiful Anuar Baharudin (1), Arnis Asmat (2)
(1) School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
(2) Climate Change and Carbon Footprint Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
Fulltext View | Download
How to cite (IJASEIT) :
Baharudin, Saiful Anuar, and Arnis Asmat. “Temporal and Spatial Evaluations of Extreme Rainfall Relationship With Daily Surface Air Temperature in Peninsular Malaysia”. International Journal on Advanced Science, Engineering and Information Technology, vol. 12, no. 1, Feb. 2022, pp. 256-62, doi:10.18517/ijaseit.12.1.14096.
Extreme rainfall is expected to increase as the climate warms, with the rate of increase at 7% per degree of warming following the Clausius-Clapeyron (CC) relationship. However, studies showed that the rate of increase might not necessarily follow the relationship. This study investigates temporal and spatial variations of daily rainfall relationship with surface air temperature in Peninsular Malaysia using data from the Global Historical Climatology Network (GHCN) using a fixed temperature interval binning method and quantile regression method. Investigation reveals that a negative scaling of daily extreme rainfall was observed for all surface air temperature and percentiles investigated, in contrast with the expectations from the CC relationship. The largest seasonal variation at 99th percentile was observed in December-January (DJF), while the lowest scaling rate was in March-May (MAM). The scaling rate tends to be higher in Subang and Melaka, and lower in Bayan Lepas, Kota Bharu and Kuantan. The scaling rate also tends to be stronger at 99th percentile compared to the lower rainfall events at 95th and 75th percentile and in warmer seasons compared to colder seasons. Further, the results show that the intensity of daily extreme rainfall in Peninsular Malaysia is decreasing with increasing surface air temperature.

IPCC, T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Climate Change 2013: The Physical Science Basis, Intergovernmental Panel on Climate Change. Cambridge University Press, 2013. https://doi.org/10.1038/446727a

S. Westra, H. J. Fowler, J. P. Evans, L. V. Alexander, P. Berg, F. Johnson, E. J. Kendon, G. Lenderink, N. M. Roberts, “Future changes to the intensity and frequency of short-duration extreme rainfall”, Rev. Geophys., vol. 52, pp. 522-555, 2014. https://doi.org/10.1002/2014RG000464

T. Nurul Nadrah Aqilah, H. Sobri, “The projection of future rainfall change over Kedah, Malaysia with the Statistical Downscaling Model,” Malaysian J. Civ. Eng., vol. 23, pp. 67-79, 2011. https://doi.org/10.11113/mjce.v23n2.269

O. O. Mayowa, s. H. Pour, S. Shahid, M. Mohsenipour, S. B. Harun, A. Heryansyah, T. Ismail, “Trends in rainfall and rainfall-related extremes in the east coast of Peninsular Malaysia,” J. Earth Syst. Sci., vol. 124, pp. 1609-1622, 2015. https://doi.org/10.1007/s12040-015-0639-9

J. Suhaila, S. M. Deni, W. Z. Wan Zin, A. A. Jemain, “Spatial patterns and trends of daily rainfall regime in Peninsular Malaysia during the southwest and northeast monsoons: 1975-2004,” Meteorol. Atmos. Phys., vol. 110, pp. 1-18, 2010. https://doi.org/10.1007/s00703-010-0108-6

A. H. Syafrina, M. D. Zalina, L. Juneng, “Historical trend of hourly extreme rainfall in Peninsular Malaysia,” Theor. Appl. Climatol., vol. 120, pp. 259-285, 2015. https://doi.org/10.1007/s00704-014-1145-8

R. P. Allan, B. J. Soden, V. O. John, W. Ingram, P. Good, “Current changes in tropical precipitation,” Environ. Res. Lett., vol. 5, p. 025205, 2010. https://doi.org/10.1088/1748-9326/5/2/025205

C. Wasko, A. Sharma, “Quantile regression for investigating scaling of extreme precipitation with temperature,” Water Resour. Res., vol. 50, pp. 3608-3614, 2014. https://doi.org/10.1002/2013WR015194

K. E. Trenberth, A. Dai, R. M. Rasmussen, D. B. Parsons, “The changing character of precipitation,” Bull. Am. Meteorol. Soc., vol. 84, pp. 1205-1218, 2003. https://doi.org/10.1175/BAMS-84-9-1205

P. Drobinski, N. D. Silva, G. Panthou, S. Bastin, C. Muller, B. Ahrens, M. Borga, D. Conte, G. Fosser, F. Giorgi, I. Gí¼ttler, V. Kotroni, L. Li, E. Morin, B. í–nol, P. Quintana-Segui, R. Romera, C. Z. Torma, “Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios,” Clim. Dyn., vol. 51, pp. 1237-1257, 2018. https://doi.org/10.1007/s00382-016-3083-x

F. Fujibe, “Annual variation of extreme precipitation intensity in Japan: Assessment of the validity of Clausius-Clapeyron scaling in seasonal change,” SOLA, vol. 12, pp. 106-110, 2016. https://doi.org/10.2151/sola.2016-024

S. M. Herath, R. Sarukkalige, V. T. V. Nguyen, “Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia,” J. Hydrol., vol. 556, pp. 1171-1181, 2018. https://doi.org/10.1016/j.jhydrol.2017.01.060

G. Lenderink, E. van Meijgaard, “Increase in hourly precipitation extremes beyond expectations from temperature changes,” Nat. Geosci., vol. 1, pp. 511-514, 2008. https://doi.org/10.1038/ngeo262

H. Ali, H. J. Fowler, V. Mishra, “Global observational evidence of strong linkage between dew point temperature and precipitation extremes,” Geophys. Res. Lett., vol. 45, pp. 12320-12330, 2018. https://doi.org/10.1029/2018GL080557

G. Lenderink, J. Attema, “A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands,” Environ. Res. Lett., vol. 10, pp. 085001, 2015. https://doi.org/10.1088/1748-9326/10/8/085001

G. Lenderink, H. Y. Mok, T. C. Lee, G. J. van Oldenborgh, “Scaling and trends of hourly precipitation extremes in two different climate zones - Hong Kong and the Netherlands,” Hydrol. Earth Syst. Sci., vol. 15, pp. 3033-3041, 2011. https://doi.org/10.5194/hess-15-3033-2011

C. Wasko, W. T. Lu, R. Mehrotra, “Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia,” Environ. Res. Lett., vol. 13, pp. 074031, 2018. https://doi.org/10.1088/1748-9326/aad135

E. E. Maeda, N. Utsumi, T. Oki, “Decreasing precipitation extremes at higher temperatures in tropical regions,” Nat. Hazards, vol. 64, pp. 935-941, 2012. https://doi.org/10.1007/s11069-012-0222-5

Malaysian Meteorological Department. (2020) Iklim Malaysia. [Online].

Available: https://www.met.gov.my/pendidikan/iklim/iklimmalaysia

K. S. Sow, L. Juneng, F. T. Tangang, A. G. Hussin, M. Mahmud, “Numerical simulation of a severe late afternoon thunderstorm over Peninsular Malaysia,” Atmos. Res., vol. 99, pp. 248-262, 2011. https://doi.org/10.1016/j.atmosres.2010.10.014

S. Mohd Zad, Z. Zulkafli, F. Muharram, “Satellite Rainfall (TRMM 3B42-V7) Performance Assessment and Adjustment over Pahang River Basin, Malaysia,” Remote Sens., vol. 10, pp. 388, 2018. https://doi.org/10.3390/rs10030388

R. Hardwick Jones, S. Westra, A. Sharma, “Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity,” Geophys. Res. Lett., vol. 37, 2010. https://doi.org/10.1029/2010GL045081

N. Utsumi, S. Seto, S. Kanae, E. E. Maeda, T. Oki, “Does higher surface temperature intensify extreme precipitation?” Geophys. Res. Lett., vol. 38, 2011. https://doi.org/10.1029/2011GL048426

P. Drobinski, B. Alonzo, S. Bastin, N. Da Silva, C. Muller, “Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?” J. Geophys. Res. Atmos., vol. 121, pp. 3100-3119, 2016. https://doi.org/10.1002/2015JD023497

P. Molnar, S. Fatichi, L. Gaí¡l, J. Szolgay, P. Burlando, “Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature,” Hydrol. Earth Syst. Sci., vol. 19, pp. 1753-1766, 2015. https://doi.org/10.5194/hess-19-1753-2015

K. Schroeer, G. Kirchengast, “Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective,” Clim. Dyn., vol. 50, pp. 3981-3994, 2018. https://doi.org/10.1007/s00382-017-3857-9

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).