Heavy Metal Uptake Test by Aquatic Plants Tissue Culture Products with Neutron Activation Analysis in Ciliwung River
How to cite (IJASEIT) :
L. Dsikowitzky et al., “Transport of pollution from the megacity Jakarta into the ocean: Insights from organic pollutant mass fluxes along the Ciliwung River,” Estuar. Coast. Shelf Sci., vol. 215, pp. 219-228, 2018, doi: 10.1016/j.ecss.2018.10.017.
T. R. Mulyaningsih, M. Irmawati, Istanto, and Alfian, “Assessment of heavy metals pollution in the sediment of Ciliwung river,” J. Phys. Conf. Ser., vol. 1436, p. 012038, 2020, doi: 10.1088/1742-6596/1436/1/012038.
L. Schweitzer and J. Noblet, “Water Contamination and Pollution,” Green Chem. An Incl. Approach, pp. 261-290, 2018, doi: 10.1016/B978-0-12-809270-5.00011-X.
S. S. Sonone, S. V Jadhav, M. S. Sankhla, and R. Kumar, “Water Contamination by Heavy Metals and their Toxic Effect on Aquaculture and Human Health through Food Chain,” Lett. Appl. NanoBioScience, vol. 10, no. 2, pp. 2148-2166, 2020, doi: 10.33263/lianbs102.21482166.
D. A. H. Nash et al., “Utilisation of an aquatic plant (Scirpus grossus) for phytoremediation of real sago mill effluent,” Environ. Technol. Innov., vol. 19, p. 101033, 2020, doi: 10.1016/j.eti.2020.101033.
P. Sharma, “Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update,” Bioresour. Technol., vol. 328, no. February, p. 124835, 2021, doi: 10.1016/j.biortech.2021.124835.
J. F. Garst, M. Potts, and R. Helm, “Physiological and Biochemical Response of,” pp. 1-13, 2007.
K. Wang, Y. Liu, Z. Song, D. Wang, and W. Qiu, “Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils,” Chemosphere, vol. 237, p. 124480, 2019, doi: 10.1016/j.chemosphere.2019.124480.
R. A. Wani, B. A. Ganai, M. A. Shah, and B. Uqab, “Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique - A Review,” J. Bioremediation Biodegrad., vol. 08, no. 04, 2017, doi: 10.4172/2155-6199.1000404.
M. B. Costa, F. V. Tavares, C. B. Martinez, I. G. Colares, and C. de M. G. Martins, “Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation,” Ecotoxicol. Environ. Saf., vol. 155, no. June 2017, pp. 117-124, 2018, doi: 10.1016/j.ecoenv.2018.01.062.
T. R. Mulyaningsih and S. Yusuf, “Determination of Minerals Content in Leaves of Moringa Oleifera By Neutron Activation Analysis,” GANENDRA Maj. IPTEK Nukl., vol. 21, no. 1, p. 11, 2018, doi: 10.17146/gnd.2018.21.1.3683.
Tabassum-Abbasi, P. Patnaik, and S. A. Abbasi, “Ability of Indian pennywort Bacopa monnieri (L.) Pennell in the phytoremediation of sewage (greywater),” Environ. Sci. Pollut. Res., vol. 27, no. 6, pp. 6078-6087, 2020, doi: 10.1007/s11356-019-07259-4.
L. Shanmugam, M. Ahire, and T. Nikam, “Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes,” Environ. Sci. Pollut. Res., vol. 27, no. 9, pp. 9349-9363, 2020, doi: 10.1007/s11356-019-07430-x.
H. M. Saleh, R. F. Aglan, and H. H. Mahmoud, “Ludwigia stolonifera for remediation of toxic metals from simulated wastewater,” Chem. Ecol., vol. 35, no. 2, pp. 164-178, 2019, doi: 10.1080/02757540.2018.1546296.
W. H. T. Ting, I. A. W. Tan, S. F. Salleh, and N. A. Wahab, “Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review,” J. Water Process Eng., vol. 22, no. February, pp. 239-249, 2018, doi: 10.1016/j.jwpe.2018.02.011.
A. Mishra, A. K. Mishra, O. P. Tiwari, and S. Jha, “Studies on metals and pesticide content in some Ayurvedic formulations containing Bacopa monnieri L.,” J. Integr. Med., vol. 14, no. 1, pp. 44-50, 2016, doi: 10.1016/S2095-4964(16)60241-8.
L. Xu and X. Wu, “Effects of Physiological Integration and Phosphorus on Spread of Alternanthera philoxeroides from Soil to Chromium-Contaminated Aquatic Habitats,” Polish J. Ecol., vol. 66, no. 4, pp. 369-381, 2019, doi: 10.3161/15052249PJE2018.66.4.005.
H. Lin, J. Liu, Y. Dong, K. Ren, and Y. Zhang, “Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations,” Environ. Sci. Pollut. Res., vol. 25, no. 18, pp. 17820-17829, 2018, doi: 10.1007/s11356-018-1785-9.
A. F. Al-Mansoory, M. Idris, S. R. S. Abdullah, and N. Anuar, “Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots,” Environ. Sci. Pollut. Res., vol. 24, no. 13, pp. 11998-12008, 2017, doi: 10.1007/s11356-015-5261-5.
J. Wang, Y. Xiong, J. Zhang, X. Lu, and G. Wei, “Naturally selected dominant weeds as heavy metal accumulators and excluders assisted by rhizosphere bacteria in a mining area,” Chemosphere, vol. 243, 2020, doi: 10.1016/j.chemosphere.2019.125365.
H. S. Titah et al., “Arsenic Resistance and Biosorption by Isolated Rhizobacteria from the Roots of Ludwigia octovalvis,” Int. J. Microbiol., vol. 2018, 2018, doi: 10.1155/2018/3101498.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).