The Influence of Anthropogenic Activities on the Concentration of Pesticides, Physicochemical and Microbiological Properties in the Chumbao River, Andahuaylas, Peru

Carlos A. Ligarda Samanez (1), David Choque Quispe (2), Betsy S. Ramos Pacheco (3), Diego E. Peralta Guevara (4), Elibet Moscoso Moscoso (5), Henry Palomino Rincon (6), Mary L. Huamán Carrión (7)
(1) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(2) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(3) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(4) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(5) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(6) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
(7) Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Perú
Fulltext View | Download
How to cite (IJASEIT) :
Ligarda Samanez, Carlos A., et al. “The Influence of Anthropogenic Activities on the Concentration of Pesticides, Physicochemical and Microbiological Properties in the Chumbao River, Andahuaylas, Peru”. International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 5, Oct. 2021, pp. 1977-85, doi:10.18517/ijaseit.11.5.14683.
The province of Andahuaylas is located in the region of Apurimac, a Peruvian city located in the Andes. Andahuaylas has three important districts: San Jerónimo, Andahuaylas and Talavera. These areas are highly populated, and their buildings are close to the Chumbao River. This research aimed to determine the influence of anthropogenic activities on the concentration of pesticides, physicochemical and microbiological characteristics in the Chumbao River. Five agricultural activities, 19 organochlorine pesticides, and 25 organophosphorus pesticides were studied. Eighteen physicochemical properties and two microbiological properties were also studied at seven sampling points along the Chumbao River during the rainy and dry seasons. Several veterinary and agricultural products were identified in the agricultural activities studied. However, no significant concentration values of organochlorine and organophosphate pesticides were found; no weed control products were found. In the case of livestock farming, albendazole and ivermectin are frequently used as anthelmintics. Organophosphate and pyrethroid insecticides are used to control flies and other ectoparasites. Several pesticides have been identified in the surveys in the case of quinoa, potato, and corn crops. Some of the physicochemical and microbiological properties are above environmental quality standards according to current Peruvian regulations; these properties increase at points where wastewater is discharged directly into the river. The study evidenced a progressive deterioration of water quality in the Chumbao River caused by anthropic activities in the basin. These may cause infectious and parasitic diseases in the urban population of the Chumbao river valley.

Instituto Nacional de Estadí­stica e Informí¡tica INEI, “Sistema de Información Regional para la Toma de Decisiones,” 2020. [Online]. Available: http://systems.inei.gob.pe:8080/SIRTOD/.

B. L. G. Barragí¡n, M. A. G. Rivillas, M. S. C. Villegas, and J. D. O. Medina, “Presence of pesticides, mercury and trihalomethanes in the water supply systems of Ibaguí©, Colombia: threats to human health,” Ambient. e Agua - An Interdiscip. J. Appl. Sci., vol. 15, no. 2, p. 1, Apr. 2020.

J. A. Dí­az-Martí­nez and C. A. Granada-Torres, “Effect of anthropic activities on the physicochemical and microbiological characteristics of the Bogotí¡ River along the municipality of Villapinzón-Cundinamarca,” Rev. Fac. Med., vol. 66, no. 1, pp. 45-52, 2018.

O. Gómez-Duarte, “Contaminación de agua en paí­ses de bajos y medianos recursos es un problema de salud píºblica global,” Rev. la Fac. Med., vol. 66, no. 1, pp. 7-8, Jan. 2018.

K. Nakagawa, H. Amano, M. Persson, and R. Berndtsson, “Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area,” Sci. Rep., vol. 11, no. 1, pp. 1-13, 2021.

D. Choque-Quispe et al., “Water quality index in the high-Andean micro-basin of the Chumbao River, Andahuaylas, Apurí­mac, Peru,” Tecnol. y Ciencias del Agua, vol. 12, no. 1, 2021.

M. P. da Rocha et al., “Tools for monitoring aquatic environments to identify anthropic effects,” Environ. Monit. Assess., vol. 190, no. 2, 2018.

Z. N. Garba, A. K. Abdullahi, A. Haruna, and S. A. Gana, “Risk assessment and the adsorptive removal of some pesticides from synthetic wastewater: a review,” Beni-Suef Univ. J. Basic Appl. Sci., ol. 10, no. 1, 2021.

I. Md Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, and M. Megharaj, “Pesticides in the urban environment: A potential threat that knocks at the door,” Sci. Total Environ., vol. 711, p. 134612, 2020.

A. Herní¡ndez-Antonio and A. M. Hansen, “Uso de plaguicidas en dos zonas agrí­colas de Mí©xico y evaluación de la contaminación de agua y sedimentos,” Revista internacional de contaminación ambiental, vol. 27. scielomx, pp. 115-127, 2011.

Ministerio del Ambiente, “Decreto Supremo N° 004-2017-MINAM.,” Estí¡ndares de Calidad Ambiental (ECA) para aguas, 2017. [Online]. Available: https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-agua-establecen-disposiciones.

S. Kouadri, S. Kateb, and R. Zegait, “Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast),” J. Saudi Soc. Agric. Sci., 2021.

S. Gupta and S. K. Gupta, “A critical review on water quality index tool: Genesis, evolution and future directions,” Ecol. Inform., vol. 63, no. January, p. 101299, 2021.

X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, and L. Ren, “Science of the Total Environment The deep challenge of nitrate pollution in river water of China,” Sci. Total Environ., vol. 770, p. 144674, 2021.

M. Custodio and R. Peñaloza, “Data on the spatial and temporal variability of physical-chemical water quality indicators of the Cunas River, Peru,” Chem. Data Collect., vol. 33, 2021.

L. Hí¥kanson, “Internal loading : A new solution to an old problem in aquatic sciences,” no. January, pp. 2-23, 2018.

Z. W. Leibowitz, L. A. F. Brito, P. V. De Lima, E. M. Eskinazi-Sant’Anna, and N. O. Barros, “Significant changes in water pCO2 caused by turbulence from waterfalls,” Limnologica, vol. 62, pp. 1-4, Jan. 2017.

O. A. Gamarra Torres, M. A. Barrena Gurbillón, E. Barboza Castillo, J. Rascón Barrios, F. Corroto, and L. A. Taramona Ruiz, “Fuentes de contaminación estacionales en la cuenca del rí­o Utcubamba, región Amazonas, Períº,” Arnaldoa, vol. 25. scielo, pp. 179-194, 2018.

P. Ivo Isí¡ Barrenha et al., “Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river,” Env. Monit Assess, vol. 190: 43, 2018.

J. Antonio, P. Aguilar, J. Campo, S. Nebot, and E. Gimeno-garcí­a, “Analysis of existing water information for the applicability of water quality indices in the fl uvial-littoral area of turia and Jucar Rivers , valencia , Spain,” Appl. Geogr., vol. 111, no. August, p. 102062, 2019.

M. Rusiñol et al., “Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures,” Sci. Total Environ., vol. 710, p. 136298, Mar. 2020.

Apurí­mac Dirección Regional de Salud, “Dirección Ejecutiva de Inteligencia Sanitaria.,” Dirección de Epidemiologia. Sala Situacional, 2020. [Online]. Available: https://www.diresaapurimac.gob.pe/web/epidemiologia/.

A. F. Fagbamigbe, O. P. Ologunwa, E. K. Afolabi, O. S. Fagbamigbe, and A. O. Uthman, “Decomposition analysis of the compositional and contextual factors associated with poor-non-poor inequality in diarrhoea among under- fi ve children in low- and middle-income countries,” Public Health, vol. 193, pp. 83-93, 2021.

C. Troeger et al., “Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016,” Lancet Infect. Dis., vol. 18, no. 11, pp. 1211-1228, 2018.

Instituto Nacional de Estadí­stica e Informí¡tica (INEI), “Encuesta Nacional de Programas Presupuestales (ENAPRES),” 2020. [Online]. Available: http://proyecto.inei.gob.pe/enapres/.

Congreso de la Republica del Períº, “Ley N° 30588,” Reforma constitucional, reconoce el derecho de acceso al agua como derecho constitucional, 2017. [Online]. Available: https://sinia.minam.gob.pe/normas/ley-reforma-constitucional-que-reconoce-derecho-acceso-agua-derecho.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).