NO2 Correlation Using Sentinel-5P Images and on-site Measurements during the Evolution of COVID-19 and its Influence in the Metropolitan District of Quito, Ecuador

Martha Correa (1), Mónica Duque (2), Mauricio Meza (3), Rodolfo Salazar (4)
(1) Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
(2) Gestión de Investigación y Desarrollo, Instituto Geográfico Militar, Quito, Ecuador
(3) Consultor Independiente, Quito, Ecuador
(4) Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Quito, Ecuador
Fulltext View | Download
How to cite (IJASEIT) :
Correa, Martha, et al. “NO2 Correlation Using Sentinel-5P Images and on-Site Measurements During the Evolution of COVID-19 and Its Influence in the Metropolitan District of Quito, Ecuador”. International Journal on Advanced Science, Engineering and Information Technology, vol. 12, no. 3, May 2022, pp. 1105-12, doi:10.18517/ijaseit.12.3.14740.
Since the first outbreak of coronavirus disease (COVID-19) reported in Wuhan (China) on December 31, 2019, countries all over the world have decreed different security measures such as lockdowns and confinement, resulting in reduced levels of air pollution. The present study explores the correlation of the levels of nitrogen dioxide (NO2) measured using two different source data as Sentinel - 5P images and the on-site database of three monitoring stations belonging to the Environmental Monitoring Network in the Metropolitan District of Quito, within three periods of time during the progression of COVID-19. The result of this analysis shows an overall correlation of ninety-three percent of the levels of NO2 for both measurements in the period January to June 2020. During the lockdown and confinement measures from March to April 2020 a reduction of forty-nine percent was found, but when confinement measures were reduced within the period May to June 2020, an increase in NO2 concentration was again observed and the reduction was only thirteen percent; thus, the reduction in NO2 concentrations may be attributed partly due to the significant reduction in vehicle exhaust gas emissions. From the correlation of the results obtained, it can be concluded that this methodology, using Sentinel-5P image analysis may be used to measure the NO2 concentrations in the atmosphere in cities where there is no on-site air quality monitoring network.

L. Ferní¡ndez, “El papel de los óxidos de nitrógeno en el Cambio Climí¡tico,” pp. 1-20, 2015, [Online]. Available: http://147.96.70.122/Web/TFG/TFG/Memoria/LAURA FERNANDEZ RIVAS.pdf.

GreenFacts, “La Contaminación del Aire Dióxido de Nitrógeno.” https://www.greenfacts.org/es/dioxido-nitrogeno-no2/index.htm (accessed Apr. 08, 2020).

K. Wark, Contaminación del aire: su origen y control, tercera edición.

WMO, “Climate | World Meteorological Organization.” https://public.wmo.int/en/our-mandate/climate (accessed Apr. 21, 2020).

M. Sharma, S. Jain, & Bhawna, and Y. Lamba, “Epigrammatic study on the effect of lockdown amid Covid-19 pandemic on air quality of most polluted cities of Rajasthan (India),” doi: 10.1007/s11869-020-00879-7/Published.

WHO, “Guí­as de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre,” 2005. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=217875A942155B81F9AE066738D59B30?sequence=1 (accessed Mar. 04, 2020).

A. Frontera, L. Cianfanelli, K. Vlachos, G. Landoni, and G. Cremona, “Severe air pollution links to higher mortality in COVID-19 patients: The ‘double-hit’ hypothesis.,” J. Infect., vol. 81, no. 2, pp. 255-259, Aug. 2020, doi: 10.1016/j.jinf.2020.05.031.

JHU, “COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).” https://coronavirus.jhu.edu/map.html (accessed Jun. 04, 2020).

Primicias, “La contaminación del aire de Quito disminuyó por la emergencia sanitaria.” https://www.primicias.ec/noticias/sociedad/contaminacion-aire-quito-coronavirus/https://www.primicias.ec/noticias/sociedad/contaminacion-aire-quito-coronavirus/ (accessed Mar. 21, 2020).

V. M. Cevallos, V. Dí­az, and C. M. Sirois, “Particulate matter air pollution from the city of Quito, Ecuador, activates inflammatory signaling pathways in vitro,” Innate Immun., vol. 23, no. 4, pp. 392-400, 2017, doi: 10.1177/1753425917699864.

ESA, “Sentinel-5P - Misiones - Sentinel Online - Sentinel.” https://sentinel.esa.int/web/sentinel/missions/sentinel-5p (accessed Apr. 05, 2020).

ESA, “Sentinel-5 precursor. Data access and products.” https://sentinel.esa.int/documents/247904/1848259/Sentinel-5P_Data_Access_and_Products (accessed Apr. 29, 2020).

S. Gautam, “COVID-19: air pollution remains low as people stay at home,” doi: 10.1007/s11869-020-00842-6/Published.

S. Roa, “Medidas para enfrentar al Covid-19 mejoran calidad del aire en dos ciudades ecuatorianas.” https://es.mongabay.com/2020/04/menor-contaminacion-del-aire-por-coronavirus-en-quito-y-cuenca-ecuador/ (accessed May 03, 2020).

C. Rivas, “Impact of Covid 19 on Ecuadorian tour guides,” Ecuadorian Sci. J., vol. 4, no. 2, pp. 1-6, 2020.

Ambientum, “Reducción de NO2 debido al COVID-19.” https://www.ambientum.com/ambientum/contaminacion/reduccion-de-no2-debido-al-covid-19.asp (accessed Apr. 18, 2020).

M. Cole, C. Ozgen, and E. Strobl, “Air Pollution and COVID-19 in Dutch Municipalities,” 2020. https://ideas.repec.org/a/kap/enreec/v76y2020i4d10.1007_s10640-020-00491-4.html (accessed May 11, 2020).

J. P. Veefkind et al., “TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications,” Remote Sens. Environ., vol. 120, no. SI, pp. 70-83, May 2012, doi: 10.1016/j.rse.2011.09.027.

S. Peña Murillo, “Impact of Atmospheric Contamination in Two Main Cities of Ecuador,” Accessed: May 05, 2020. [Online]. Available: https://www.researchgate.net/publication/335032934_Impact_of_atmospheric_contamination_in_two_main_cities_of_Ecuador.

Secretarí­a del Ambiente - Quito, “Indice Quiteño de la Calidad del Aire (IQCA),” 2020. http://www.quitoambiente.gob.ec/ambiente/index.php/indice-quiteno-de-la-calidad-del-aire (accessed Jun. 25, 2020).

Distrito Metropolitano de Quito, “Informe de la Calidad de Aire -2016,” 2017, 2017. http://www.quitoambiente.gob.ec/images/Secretaria_Ambiente/red_monitoreo/informacion/Informe_Calidad_Aire_2016.pdf.

R. Parra, “Efecto Fin de Semana en la calidad del aire de la ciudad de Cuenca, Ecuador,” ACI Av. en Ciencias e Ing., vol. 9, no. 15, Dec. 2017, doi: 10.18272/aci.v9i15.291.

Secretarí­a del Ambiente - Quito, “Red de Monitero Atmosfí©rico.” http://www.quitoambiente.gob.ec/index.php/carapungo (accessed Jun. 02, 2020).

USFQ, “Conexiones USFQ - Una radiografí­a al trí¡fico de Quito.” https://conexiones.usfq.edu.ec/index.php/369-una-radiografia-al-trafico-de-quito (accessed Jun. 25, 2020).

ESA, “Sentinel-5P muestra la contaminación del aire,” 2017, [Online]. Available: https://www.esa.int/Space_in_Member_States/Spain/Sentinel-5P_muestra_la_contaminacion_del_aire#:~:text=Sentinel-5P aloja el sensor,que respiramos y a nuestro clima.

O. Mutanga and L. Kumar, “Google earth engine applications,” Remote Sensing, vol. 11, no. 5. MDPI, p. 591, 2019.

GEE, “Sentinel-5P OFFL NO2: dióxido de nitrógeno fuera de lí­nea.” https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 (accessed Apr. 12, 2020).

G. A. Perilla and J. F. Mas, “Google Earth Engine - GEE: A powerful tool linking the potential of massive data and the efficiency of cloud processing,” Investig. Geogr., no. 101, pp. 0-2, 2020, doi: 10.14350/rig.59929.

E. Paredes and A. B. ílvarez, “Situación actual del Sistema de transporte en la ciudad de Quito, Ecuador: una propuesta de mejora,” TRIM. Tordesillas, Rev. Investig. Multidiscip., no. 16, pp. 5-40, Jul. 2019, doi: 10.24197/TRIM.16.2019.5-40.

G. Martí­nez, E. Cortí©s, and A. Pí©rez, “Metodologí­a para el aní¡lisis de correlación y concordancia en equipos de mediciones similares,” Univ. y Soc., pp. 65-70, 2016, [Online]. Available: http:/rus.ucf.edu.cu/.

Y. Ogen, “Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality,” Sci. Total Environ., vol. 726, Jul. 2020, doi: 10.1016/j.scitotenv.2020.138605.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).