Seismic Hazard Zonation in Gedebage Future Development in Bandung City Using HVSR Inversion

Nendi Rohaendi (1), Rahayu Robiana (2), Emi Sukiyah (3), Dicky Muslim (4), Athanasius Cipta (5)
(1) Post Graduate Program of Geology, Faculty of Geological Engineering, University of Padjadjaran, Indonesia
(2) Geological Agency of Indonesia, Indonesia
(3) Post Graduate Program of Geology, Faculty of Geological Engineering, University of Padjadjaran, Indonesia
(4) Post Graduate Program of Geology, Faculty of Geological Engineering, University of Padjadjaran, Indonesia
(5) Geological Agency of Indonesia, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Rohaendi, Nendi, et al. “Seismic Hazard Zonation in Gedebage Future Development in Bandung City Using HVSR Inversion”. International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 3, June 2021, pp. 947-54, doi:10.18517/ijaseit.11.3.14996.
Greater Bandung, the largest economic growth corridor in Indonesia after Jabodetabek, is sitting on the Bandung basin. This deep sedimentary basin is situated just 12 km south of the active Lembang fault. Gedebage is an area intended to be the new economic and business center located in the easternmost of Bandung. The research aims to identify the vulnerability of Gedebage area against seismic ground motions. The area's morphology is dominated by a flat area with 0 - 8% of slope and predominantly composed of an old lake deposit. Topography, including basement morphology, sediment thickness, and physical properties, plays a great role in escalating/de-escalating seismic ground motions. A specific morphology may trap and prolong seismic shaking. Furthermore, stiffness and bedrock depth are instrumental in passing the spectral ground motions to the surface. The HVSR inversion method is applied to map subsurface conditions that successfully applied in Palu and its surrounding area. The research shows that Gedebage areas are vulnerable to the seismic hazard, referring to the shear wave velocity (Vs30) distribution and seismic hazard micro zonation maps. The discussion of the research findings is useful for future infrastructure development in the research area. The area is categorized as soft soil and medium soil classes, and it has a high vulnerability for destruction if there is an earthquake. The area should be cleared from vital infrastructures such as government buildings, schools, or hospitals.

S. Bronto, and U. Hartono, “Potensi Sumber Daya Geologi di Daerah Cekungan Bandung dan sekitarnya,” Jurnal Geologi Indonesia, vol. 1, pp. 9-18, 2006.

M.A.C. Dam, P. Suparan, J.J.Nossin, R.P.G.A. Voskuil, and GTL Group, “A chronology for geomorphological developments in the greater Bandung Area, West-java, Indonesia,” Journal of Southeast Asia Earth Sciences, vol. 12, pp. 101-115, 1996.

A.K.M. Tarigan, S. Sagala, D.A.A. Samsura, D. F. Fiisabiilillah, H.A. Simarmata, and M. Nababan, “Bandung City, Indonesia,” Cities, vol.50, pp.100-110, 2016.

P.R. Cummins, and I. Meilano, “Geohazards in Indonesia: Earth Science for Disaster Risk Reduction,” Geological Society, London, Special Publications, vol. 441, pp. 1-7, First published online September 6, 2017, updated September 7, 2017.

PusGen. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017, cetakan pertama, ISBN 978-602-5489-01-3, Puslitbang Perumahan dan Pemukiman, Balitbang, Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017.

E. Sukiyah, E. Sunardi, N. Sulaksana, and P. Rendra, “Tectonic Geomorphology of Upper Cimanuk Drainage Basin, West Java, Indonesia,” International Journal on Advanced Science, Engineering and Information Technology, Vol.8, No. 3, 2018.

C. Sulaeman and A. Omang, “Peta Kawasan Rawan Bencana Gempa Bumi Provinsi Jawa Barat,” Pusat Vulkanologi dan Mitigasi Bencana Geologi, Badan Geologi, KESDM Indonesia, 2014.

A. Koulali, S. McClusky, S. Susilo, Y. Leonard, P. Cummins, P. Tregoning, I. Meilano, J. Efendi, and A.B. Wijanarto. “The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning,” Earth Planet Sci. Let., 2016.

T.O. Simandjuntak and A.J. Barber, “Contrasting tectonic styles in the Neogene orogenic belts of Indonesia,” From Hall, R. & Blundell, D. (eds), Tectonic Evolution of Southeast Asia, Geological Society Special Publication, No. 106, pp. 185-201, 1996.

Supartoyo, D. Surono, and E.T. Putranto, “Katalog Gempabumi Merusak Di Indonesia Tahun 1612 - 2014,” Pusat Vulkanologi Dan Mitigasi Bencana Geologi, Badan Geologi, KESDM, Edisi Kelima, 2014.

A. Cipta, A. Rudyanto, H. Afif, R. Robiana, A. Solikhin, A. Omang, Supartoyo, and S. Hidayati, “Unearthing the buried Palu-Koro fault and the pattern of damage caused by the 2018 Sulawesi Earthquake using HVSR inversion”. The Geological Society of London, 2019.

B. Pranata, T. Yudistira, S. Widiyantoro, B. Brahmantyo, P.R. Cummins, E. Saygin, Z. Zulfakriza, S. Rosalia, and A. Cipta, “Shear wave velocity structure beneath Bandung basin,West Java, Indonesia from ambient noise tomography,” Geophys. J. Int. vol. 220, pp. 1045-1054, 2020.

D. Liang, F. Gan, W. Zhang, and L. Jia, “The application of HVSR method in detecting sediment thickness in karst collapse area of Pearl River Delta, China,” Environmental Earth Sciences, vol.77, pp.259, 2018.

M. Alzwar, N. Akbar, and S. Bachri, “Peta Geologi Lembar Lembar Garut dan Pameungpeuk, Jawa Barat, Skala 1 : 100.000,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1992.

M. Koesmono, Kusnama, and N. Suwarna, “Peta Geologi Lembar Sindangbarang dan Bandarwaru, Jawa Barat, Skala 1 : 100.000,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1996.

P.H.Silitonga, “Peta Geologi Lembar Bandung, Jawa Barat Skala 1 : 100.000,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1973.

Sudjatmiko, “Peta Geologi Lembar Cianjur, Jawa Barat, Skala 1 : 100.000,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1972.

M.R. Daryono, D. H. Natawidjaja, B. Sapiie, and P. Cummins, “Earthquake Geology of the Lembang Fault, West Java, Indonesia,” Tectonophysics, 2018.

Afnimar, E. Yulianto, and Rasmid. “Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault,” Geoscience Letters, vol. 2, pp. 4, 2015.

A. Tohari, A. M. Sari, and A.J. Syahbana, “Ketebalan Lapisan Tanah Lunak Di Wilayah Cekungan Bandung Berdasarkan Metode Mikrotremor,” in Prosiding Geoteknologi LIPI, 2016, pp. 84-93.

A.M.Sari, E. Soebowo, A. Fakhrurrozi, A.J. Syahbana, andA, Tohari, “Microzonation of Soil Amplification Based on Microtremor, SPT and CPTU Data In Bandung Basin,” Riset Geologi Tambang, vol. 2, pp. 53-64, 2019.

A. Cipta, P.R. Cummins, J. Dettmer, E. Saygin, M. Irsyam, A. Rudyanto, and J. Murjaya, “Seismic velocity structure of the Jakarta Basin, Indonesia, using trans-dimensional Bayesian inversion of horizontal-to-vertical spectral ratios,” Geophys. J. Int. vol. 215, pp. 431-449, 2018.

A. Cipta, P.R. Cummins, M. Irsyam, and S. Hidayati, “Basin Resonance and Seismic Hazard in Jakarta, Indonesia,” Geosciences, MDPI, vol. 8, 128, 2018.

A. Gosar, “Study on the applicability of the microtemor HVSR method to support seismic microzonation in the town of Indrija (W Slovenia),” Natural Hazard and Earth System Sciences, vol. 17, pp. 925-937, 2017.

S. Pramono, W.A. Prakoso, P.R. Cummins, A. Rahayu, A. Rudyanto, F. Syukur, and Sofian, “Investigation of Subsurface Characteristics by using a Vs30 Parameter and a Combination of the HVSR and SPAC Methods for Microtremor Arrays.” International Journal of Technology, vol.8(6), pp. 983-992, 2017.

NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450), Building Seismic Safety Council National Institute of Building Sciences, 2003.

L.Z. Mase, “Reliability Study of Spectral Acceleration Designs Against Earthquakes in Bengkulu City, Indonesia,” International Journal of Technology, vol. 9(5), pp. 910-924, 2018.

Y. Nakamura, “A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface,” Q Rep. RTRI, vol. 30(1), pp. 25-33, 1989.

C.H. Kuo, C.T. Chen, C.M. Lin, K.L. Wen, J.Y. Huang, and S.C. Chang, “S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan,” Journal of Asian Earth Sciences, vol. 128, pp.27-41, 2016.

J. X. Zhao, K. Irikura, J. Zhang, Y. Fukushima, P.G. Somerville, A. Asano, and H, Ogawa, “An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio,” Bulletin of the Seismological Society of America, vol.96(3), pp. 914-925, 2006.

B.S.J Chiou and R.R. Youngs, “Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra,” Earthquake Spectra, vol. 30, No. 3, pp. 1117-1153, 2014.

M.B. Dan, I. Armas, and A. Goretti, Ed., Earthquake Hazard Impact and Urban Planning, ser. Environmental Hazards Series. Dordrecht, Netherlands; Springer Science, 2014.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).