Gravitational Base Parameters Identification for a Knee Rehabilitation Parallel Robot

Pulloquinga José L. (1), Escarabajal Rafael J. (2), Mata Vicente (3), Valera Ángel (4), Zambrano Iván (5), Rosales Andres (6)
(1) Departamento de Ingeniería de Sistemas y Automática, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
(2) Departamento de Ingeniería de Sistemas y Automática, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
(3) Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
(4) Departamento de Ingeniería de Sistemas y Automática, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
(5) Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Ladrón de Guevara, 253, Quito, 170517, Ecuador
(6) Departamento de Automatización y Control Industrial, Escuela Politécnica Nacional, Ladrón de Guevara, 253, Quito, 170517, Ecuador
Fulltext View | Download
How to cite (IJASEIT) :
José L. , Pulloquinga, et al. “Gravitational Base Parameters Identification for a Knee Rehabilitation Parallel Robot”. International Journal on Advanced Science, Engineering and Information Technology, vol. 12, no. 2, Apr. 2022, pp. 501-7, doi:10.18517/ijaseit.12.2.15289.
New robotic technology is emerging nowadays to tackle lower limb rehabilitation issues. However, the commercial robots available for lower limb rehabilitation are usually oversize and expensive. Knee rehabilitation is generally aided by a professional therapist, making this clinical procedure an interesting scope for robotics. Parallel robots are suitable candidates for knee rehabilitation due to their high load capacity, stiffness, and accuracy compared to serial ones. In contrast, this robot has singular configurations inside its workspace, and its dynamic model is generally complex. For these reasons, a parallel robot for knee rehabilitation needs an advanced control unit to solve complex mathematical problems that ensure patient security. This study proposes the base parameters identification of a compact gravitational linear model of a 3UPS+RPU parallel robot using singular value decomposition. This paper recommends adding a statistical method focused on condition number minimization to the singular value decomposition process. This statistical method reduces the computational resources taken searching for the best inertial parameters combination at the beginning of the base parameter identification. The gravitational base parameters identified have a physical meaning and low complexity. This fact makes the results of this research the basis of an adaptative control applied to 3UPS+RPU parallel robot. This study shows that the gravitational term is the most influential for knee rehabilitation tasks, compared with the inertial, Coriolis, and centrifugal components, regarding the dynamic behavior of the parallel robot.

S. Xie, Advanced robotics for medical rehabilitation: current state of the art and recent advances, no. 108. 2016.

I. Dí­az, J. J. Gil, and E. Sí¡nchez, “Lower-Limb Robotic Rehabilitation: Literature Review and Challenges,” J. Robot., vol. 2011, pp. 1-11, 2011.

S. Briot and W. Khalil, Dynamics of Parallel Robots--From Rigid Links to Flexible Elements. ISBN: 978-3-319-19787-6. 2015.

M. Vallí©s, J. Cazalilla, í. Valera, V. Mata, í. Page, and M. DIí¡z-Rodrí­guez, “A 3-PRS parallel manipulator for ankle rehabilitation: Towards a low-cost robotic rehabilitation,” Robotica, vol. 35, no. 10, pp. 1939-1957, 2017.

M. Zhang, T. C. Davies, and S. Xie, “Effectiveness of robot-assisted therapy on ankle rehabilitation - A systematic review,” Journal of NeuroEngineering and Rehabilitation, vol. 10, no. 1. 2013.

G. Liu, J. Gao, H. Yue, X. Zhang, and G. Lu, “Design and kinematics analysis of parallel robots for ankle rehabilitation,” in IEEE International Conference on Intelligent Robots and Systems, 2006, pp. 253-258.

P. Araujo-Gómez, V. Mata, M. Dí­az-Rodrí­guez, A. Valera, and A. Page, “Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks,” J. Mech. Robot., vol. 9, no. 6, p. 061004, Dec. 2017.

F. Valero, M. Dí­az-Rodrí­guez, M. Vallí©s, A. Besa, E. Bernabí©u, and í. Valera, “Reconfiguration of a parallel kinematic manipulator with 2T2R motions for avoiding singularities through minimizing actuator forces,” Mechatronics, vol. 69, p. 102382, Aug. 2020.

B. Danaei, A. Arian, M. Tale masouleh, and A. Kalhor, “Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism,” Multibody Syst. Dyn., vol. 41, no. 4, pp. 367-390, Dec. 2017.

M. Dí­az-Rodrí­guez, V. Mata, í. Valera, and í. Page, “A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters,” Mech. Mach. Theory, vol. 45, no. 9, pp. 1337-1356, Sep. 2010.

Y. Liu, B. Liang, W. Xu, and X. Wang, “A method for measuring the inertia properties of a rigid body using 3-URU parallel mechanism,” Mech. Syst. Signal Process., vol. 123, pp. 174-191, May 2019.

G. Gao, G. Sun, J. Na, Y. Guo, and X. Wu, “Structural parameter identification for 6 DOF industrial robots,” Mech. Syst. Signal Process., vol. 113, pp. 145-155, Dec. 2018.

M. Gautier, “Numerical calculation of the base inertial parameters of robots,” J. Robot. Syst., vol. 8, no. 4, pp. 485-506, Aug. 1991.

K. Ayusawa and Y. Nakamura, “Identification of base parameters for large-scale kinematic chains based on physical consistency approximation by polyhedral convex cones,” in CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 524, Springer International Publishing, 2010, pp. 91-98.

J. Cazalilla, M. Vallí©s, V. Mata, M. Dí­az-Rodrí­guez, and A. Valera, “Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models,” Robot. Comput. Integr. Manuf., vol. 30, no. 5, pp. 468-477, Oct. 2014.

J. Ros, X. Iriarte, and V. Mata, “3D inertia transfer concept and symbolic determination of the base inertial parameters,” in Mechanism and Machine Theory, 2012, vol. 49, pp. 284-297.

A.I. Kapandji, Fisiologia articular II, Miembro inferior, 6th ed. Madrid: Mí©dica Panamericada, 2010.

M. Vallí©s et al., “Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator,” Mech. Based Des. Struct. Mach., vol. 46, no. 4, pp. 425-439, Jul. 2018.

S. Briot and M. Gautier, “Global identification of joint drive gains and dynamic parameters of parallel robots,” Multibody Syst. Dyn., vol. 33, no. 1, pp. 3-26, 2015.

M. Dí­az-Rodrí­guez, “Identificación de parí¡metros diní¡micos de robots paralelos basada en un conjunto de parí¡metros significativos,” Universitat Polití¨cnica de Valí¨ncia, 2009.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).