Estimation of Single Crop Coefficient and Crop Evapotranspiration Using Remote Sensing for Irrigation Management
How to cite (IJASEIT) :
Q. Zhang, Z. Yang, X. Hao, and P. Yue, “Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China,” Clim. Dyn., vol. 52, no. 7-8, pp. 3891-3903, 2019, doi: 10.1007/s00382-018-4364-3.
E. Eichelmann et al., “The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento-San Joaquin River Delta, California,” Agric. For. Meteorol., 2018, doi: 10.1016/j.agrformet.2018.03.007.
X. Sun, B. P. Wilcox, and C. B. Zou, “Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies,” J. Hydrol., vol. 576, no. June, pp. 123-136, 2019, doi: 10.1016/j.jhydrol.2019.06.022.
W. Dong, C. Li, Q. Hu, F. Pan, J. Bhandari, and Z. Sun, “Potential Evapotranspiration Reduction and Its Influence on Crop Yield in the North China Plain in 1961-2014,” Hindawi Adv. Meteorol., vol. 2020, p. 10, 2020, doi: 10.1155/2020/3691421.
Dwipa, I., Kasim, M., Rozen, N., & Nurhamidah, N. (2020). Land flooding effect Before and After Planting on Rice Yield in System Of Rice Intensification. International Journal on Advance Science Engineering Information Technology, 10(3).
R. G. Allen, L. S.Pereira, D. Raes, and M. Smith, FAO Irrigation and Drainage Paper No. 56, vol. 13, no. 3. Roma: FAO - Food and Agriculture Organization of the United Nations, 1998.
K. Xiang, Y. Li, R. Horton, and H. Feng, “Similarity and difference of potential evapotranspiration and reference crop evapotranspiration - a review,” Agric. Water Manag., vol. 232, no. January, 2020, doi: 10.1016/j.agwat.2020.106043.
R. Filgueiras et al., “Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data,” Agric. Water Manag., vol. 241, no. June, p. 106346, 2020, doi: 10.1016/j.agwat.2020.106346.
A. Ribera-Fonseca, E. Jorquera-Fontena, M. Castro, P. Acevedo, J. C. Parra, and M. Reyes-Diaz, “Exploring VIS/NIR reflectance indices for the estimation of water status in highbush blueberry plants grown under full and deficit irrigation,” Sci. Hortic. (Amsterdam)., vol. 256, no. June, p. 108557, 2019, doi: 10.1016/j.scienta.2019.108557.
N. Mzid, V. Cantore, G. De Mastro, R. Albrizio, M. H. Sellami, and M. Todorovic, “The Application of Ground-Based and Satellite Remote Sensing for Estimation of Bio-Physiological Parameters of Wheat Grown Under Different Water Regimes,” Water, vol. 12, no. 8, p. 2095, 2020, doi: 10.3390/w12082095.
U. Mahajan and B. R. Bundel, “Drones for Normalized Difference Vegetation Index ( NDVI ), to Estimate Crop Health for Precision Agriculture: A Cheaper Alternative for Spatial Satellite Sensors,” in International Conference on Innovative Research in Agriculture, Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change (AFHABEC-2016), 2016, no. January, pp. 38-41.
J. M. Chen and J. Liu, “Evolution of evapotranspiration models using thermal and shortwave remote sensing data,” Remote Sens. Environ., vol. 237, no. December 2019, p. 111594, 2020, doi: 10.1016/j.rse.2019.111594.
A. Reyes-gonzí¡lez et al., “Estimation of Crop Evapotranspiration Using Satellite Remote Sensing-Based Vegetation Index,” Adv. Meteorol., vol. 2018, no. 1, 2018.
C. J. Harmse, H. Gerber, and A. Van Niekerk, “Evaluating Several Vegetation Indices Derived from Sentinel-2 Imagery for Quantifying Localized Overgrazing in a Semi-Arid Region of South Africa,” Remote Sens., vol. 14, no. 1720, p. 18, 2022, doi: 10.3390/rs14071720.
H. K. Zhang et al., “Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences,” Remote Sens. Environ., vol. 215, no. April, pp. 482-494, 2018, doi: 10.1016/j.rse.2018.04.031.
S. R. Karlsen, L. Stendardi, H. Tí¸mmervik, L. Nilsen, I. Arntzen, and E. J. Cooper, “Time-series of cloud-free sentinel-2 ndvi data used in mapping the onset of growth of central spitsbergen, svalbard,” Remote Sens., vol. 13, no. 15, pp. 1-14, 2021, doi: 10.3390/rs13153031.
K. Yang, Y. Luo, M. Li, S. Zhong, Q. Liu, and Xiuhong Li, “Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine,” Remote Sens., vol. 14, no. 4395, p. 24, 2022.
E. Firmansyah, J. Gaol, and etyo B. Susilo, “Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur,” J. Nat. Resour., vol. 9, no. 3, pp. 746-757, 2019, doi: 10.29244/JPSL.9.3.746-757.
J. Li and D. P. Roy, “A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring,” Remote Sens., vol. 9, no. 902, pp. 1-17, 2017, doi: 10.3390/rs9090902.
S. Li, J. Wang, D. Li, Z. Ran, and B. Yang, “Evaluation of landsat 8-like land surface temperature by fusing landsat 8 and modis land surface temperature product,” Processes, vol. 9, no. 12, pp. 1-19, 2021, doi: 10.3390/pr9122262.
Y. Zhang, W. Han, X. Niu, and G. Li, “Maize crop coefficient estimated from UAV-measured multispectral vegetation indices,” Sensors (Switzerland), vol. 19, no. 23, pp. 1-17, 2019, doi: 10.3390/s19235250.
S. K. Dingre, S. D. Gorantiwar, and S. A. Kadam, “Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane,” Precis. Agric., vol. 22, no. 4, pp. 1134-1153, 2021, doi: 10.1007/s11119-020-09774-8.
H. Niu, D. Wang, and Y. Chen, “Estimating Crop Coefficients Using Linear and Deep Stochastic Configuration Networks Models and UAV-Based Normalized Difference Vegetation Index Estimating Crop Coefficients Using Linear and Deep Stochastic Configuration Networks Models and UAV-Based Norm,” 2020, no. September, pp. 1485-1490, doi: 10.1109/ICUAS48674.2020.9213888.
R. Wikantiyoso, A. G. Sulaksono, and T. Suhartono, “Detection of potential green open space area using landsat 8 satellite imagery,” ARTEKS J. Tek. Arsit., vol. 6, no. 1, pp. 149-154, 2021, doi: 10.30822/arteks.v6i1.730.
L. Wang, Y. Lu, and Y. Yao, “Comparison of three algorithms for the retrieval of land surface temperature from landsat 8 images,” Sensors (Switzerland), vol. 19, no. 22, 2019, doi: 10.3390/s19225049.
U. Avdan and G. Jovanovska, “Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data,” J. Sensors, vol. 2016, 2016, doi: 10.1155/2016/1480307.
J. A. Sobrino, J. C. Jimí©nez-Muñoz, and L. Paolini, “Land surface temperature retrieval from LANDSAT TM 5,” Remote Sens. Environ., vol. 90, no. 4, pp. 434-440, 2004, doi: 10.1016/j.rse.2004.02.003.
F. Wang, Z. Qin, C. Song, L. Tu, A. Karnieli, and S. Zhao, “An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data,” Remote Sens., vol. 7, no. 4, pp. 4268-4289, 2015, doi: 10.3390/rs70404268.
J. Cao, W. Zhou, Z. Zheng, T. Ren, and W. Wang, “Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature,” Landsc. Urban Plan., vol. 206, no. November 2020, p. 103979, 2021, doi: 10.1016/j.landurbplan.2020.103979.
M. A. El-Shirbeny, B. Abdellatif, A. E. M. Ali, and N. H. Saleh, “Evaluation of Hargreaves based on remote sensing method to estimate potential crop evapotranspiration,” Int. J. GEOMATE, vol. 11, no. 1, pp. 2143-2149, 2016, doi: 10.21660/2016.23.1122.
H. R. Fooladmand and S. H. Ahmadi, “Monthly spatial calibration of Blaney-Criddle equation for calculating monthly ET o in south of Iran ,” Irrig. Drain., vol. 58, no. 2, pp. 234-245, 2009, doi: 10.1002/ird.409.
N. Seenu, D. R. M. K. Chetty, T. Srinivas, K. M. A. Krishna, and D. A. Selokar, “Reference Evapotranspiration Assessment Techniques for Estimating Crop Water Requirement,” Int. J. Recent Technol. Eng., vol. 8, no. 4, pp. 1094-1100, 2019, doi: 10.35940/ijrte.d6738.118419.
F. O. Akinyemi, M. Ikanyeng, and J. Muro, “Land cover change effects on land surface temperature trends in an African urbanizing dryland region,” City Environ. Interact., vol. 4, no. 2019, p. 100029, 2019, doi: 10.1016/j.cacint.2020.100029.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).