Comprehensive Productivity Performance and Environment-Friendly Cultivation of Shallot (Allium ascalonicum L. var. Enrekang) through Integrated Spatial-Temporal Geographic Information System

Sulfiana (1), Abri (2)
(1) Department of Agribusiness, Faculty of Agriculture, Universitas Islam Makassar, Makassar, Indonesia
(2) Department of Agrotechnology, Faculty of Agriculture, Universitas Bosowa, Makassar, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Sulfiana, and Abri. “Comprehensive Productivity Performance and Environment-Friendly Cultivation of Shallot (Allium Ascalonicum L. Var. Enrekang) through Integrated Spatial-Temporal Geographic Information System”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 4, Aug. 2024, pp. 1240-7, doi:10.18517/ijaseit.14.4.16808.
Sustainability and inclusivity of the food system are concerned with global hunger closure and are critical to aligning the world's development goals. Boosting crop yields and satisfactory commodity production improves economic-driven productivity, reduces poverty, and guarantees food. This study's primary objective is to represent a significantly, comprehensively, and comparatively assessed productivity performance and environment-friendly cultivation of Shallot (Allium ascalonicum L. var. Enrekang). Hence, we propose a sophisticated geographic information system and technology by integrating in-situ properties and a multispectral-spatial-temporal dataset from Sentinel-2 MSI with a spherical-scale analysis of the Google Earth Engine (GEE). Environtment-physical characteristics of Shallot (Allium ascalonicum L. var. Enrekang) are treated as geology and geomorphology, water resources, soil parameters (permeability, pH, C-organic, soil colour-type), and land use land change (LULC). In contrast, growth performance was observed from 2019 until 2024. Research results show that the number of Shallot crop areas stood at 90% of the vegetation area of 117.56 km2 in the Anggeraja sub-district. However, the vegetation area has lost 13,5 % or 101,717 km2 in 2024. Environment-friendly cultivation needs productivity harvested area and conservation like terraced in Batu Noni village. Moreover, the optimal temperature for comprehensive productivity performance in shallot plants is between 20° and 30°. The sun's intensity gives 12 hours of exposure in the summer (June-July-August).

M. Wahyudin, M. Maksum, and H. Yuliando, “The Shallot Pricing in the View of Import Restriction and Price Reference,” Agric. Agric. Sci. Procedia, vol. 3, pp. 132–136, 2015, doi: 10.1016/j.aaspro.2015.01.026.

F. N. Al-Aziz and E. Suryani, “System Dynamics Modeling to Increase the Productivity of Chili Pepper through Good Agricultural Practices in East Java,” Procedia Comput. Sci., vol. 234, pp. 733–740, 2024, doi: 10.1016/j.procs.2024.03.094.

T. S. Adebayo, S. T. Onifade, A. A. Alola, and O. B. Muoneke, “Does it take international integration of natural resources to ascend the ladder of environmental quality in the newly industrialized countries?,” Resour. Policy, vol. 76, p. 102616, 2022.

L. Sun, Economic Growth and Development: Chinese Agribusiness Enterprises Development. Springer, 2020.

P. Thivya, “Effect of chemical preservatives and packaging treatment on storage quality of peeled shallot onion,” Appl. Food Res., vol. 2, no. 2, p. 100160, 2022, doi: 10.1016/j.afres.2022.100160.

I. M. Fahmid, Wahyudi, A. Agustian, R. Aldillah, and E. Gunawan, “The potential swamp land development to support food estates programmes in Central Kalimantan, Indonesia,” Environ. Urban. ASIA, vol. 13, no. 1, pp. 44–55, 2022.

F. Ramadhani et al., “Multisource spatiotemporal analysis of cropping patterns on dry upland: A case study in Rubaru Sub-district, Sumenep Regency,” Egypt. J. Remote Sens. Sp. Sci., vol. 27, no. 2, pp. 403–415, 2024, doi: 10.1016/j.ejrs.2024.04.008.

W. Ma, M. A. Marini, and D. B. Rahut, “Farmers’ organizations and sustainable development: An introduction,” Ann. Public Coop. Econ., vol. 94, no. 3, pp. 683–700, 2023.

R. Ruben, “From market-based development to value chain transformation: What markets can (not) do for rural poverty alleviation?,” J. Rural Stud., vol. 109, p. 103328, 2024.

M. T. Lukyanova, V. A. Kovshov, Z. A. Galin, Z. A. Zalilova, and E. V Stovba, “Scenario method of strategic planning and forecasting the development of the rural economy in agricultural complex,” Scientifica (Cairo)., vol. 2020, no. 1, p. 9124641, 2020.

M. V. Barros, R. Salvador, A. C. de Francisco, and C. M. Piekarski, “Mapping of research lines on circular economy practices in agriculture: From waste to energy,” Renew. Sustain. Energy Rev., vol. 131, p. 109958, 2020.

C. M. Viana, D. Freire, P. Abrantes, J. Rocha, and P. Pereira, “Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review,” Sci. Total Environ., vol. 806, p. 150718, 2022.

F. Pelletier, J. A. Cardille, M. A. Wulder, J. C. White, and T. Hermosilla, “Inter- and intra-year forest change detection and monitoring of aboveground biomass dynamics using Sentinel-2 and Landsat,” Remote Sens. Environ., vol. 301, p. 113931, 2024, doi: 10.1016/j.rse.2023.113931.

S. Muqaddas, W. S. Qureshi, H. Jabbar, A. Munir, and A. Haider, “A comprehensive deep learning approach for harvest ready sugarcane pixel classification in Punjab, Pakistan using Sentinel-2 multispectral imagery,” Remote Sens. Appl. Soc. Environ., vol. 35, p. 101225, 2024, doi: 10.1016/j.rsase.2024.101225.

S. Jamali, P. O. Olsson, A. Ghorbanian, and M. Müller, “Examining the potential for early detection of spruce bark beetle attacks using multi-temporal Sentinel-2 and harvester data,” ISPRS J. Photogramm. Remote Sens., vol. 205, no. September, pp. 352–366, 2023, doi: 10.1016/j.isprsjprs.2023.10.013.

A. Vavassori et al., “A combined Remote Sensing and GIS-based method for Local Climate Zone mapping using PRISMA and Sentinel-2 imagery,” Int. J. Appl. Earth Obs. Geoinf., vol. 131, no. May, p. 103944, 2024, doi: 10.1016/j.jag.2024.103944.

BPS, “Badan Pusat Statistik, Kabupaten Enrekang Dalam Angka 2018,” 2018.

P. Martikainen, a Suominen, and T. Mit, “Ͱ 2 0 Ͱ 2 1,” Phys. Rev. A, vol. 60, no. 5, pp. 4175–4178, 1999.

Y. Zhao, H. Rahardjo, and H. Liu, “A new experimental setup for the determination of drying soil–water characteristic curve and coefficient of permeability using the continuous evaporation method and osmotic tensiometers,” Soils Found., vol. 64, no. 3, p. 101470, 2024, doi: 10.1016/j.sandf.2024.101470.

Y. Wang, J. Gu, and J. Ni, “Influence of biochar on soil air permeability and greenhouse gas emissions in vegetated soil: A review,” Biogeotechnics, vol. 1, no. 4, p. 100040, 2023, doi: 10.1016/j.bgtech.2023.100040.

P. T. Khanh, S. Pramanik, and T. T. H. Ngoc, “Soil Permeability of Sandy Loam and Clay Loam Soil in the Paddy Fields in An Giang Province in Vietnam,” Environ. Challenges, vol. 15, no. March, p. 100907, 2024, doi: 10.1016/j.envc.2024.100907.

J. Chen and Z. Zhang, “An improved fusion of Landsat-7/8, Sentinel-2, and Sentinel-1 data for monitoring alfalfa: Implications for crop remote sensing,” Int. J. Appl. Earth Obs. Geoinf., vol. 124, no. September, p. 103533, 2023, doi: 10.1016/j.jag.2023.103533.

E. W. J. Bergsma and R. Almar, “Coastal coverage of ESA’Sentinel 2 mission,” Adv. Sp. Res., vol. 65, no. 11, pp. 2636–2644, 2020.

F. Zeng et al., “Monitoring inland water via Sentinel satellite constellation: A review and perspective,” ISPRS J. Photogramm. Remote Sens., vol. 204, pp. 340–361, 2023.

Y. Liu et al., “Vietnam wetland cover map: using hydro-periods Sentinel-2 images and Google Earth Engine to explore the mapping method of tropical wetland,” Int. J. Appl. Earth Obs. Geoinf., vol. 115, p. 103122, 2022.

Y. Cheng, A. Vrieling, F. Fava, M. Meroni, M. Marshall, and S. Gachoki, “Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2,” Remote Sens. Environ., vol. 248, p. 112004, 2020.

M. Belgiu, M. Marshall, M. Boschetti, M. Pepe, A. Stein, and A. Nelson, “PRISMA and Sentinel-2 spectral response to the nutrient composition of grains,” Remote Sens. Environ., vol. 292, no. April, p. 113567, 2023, doi: 10.1016/j.rse.2023.113567.

J. Yanti et al., “Measuring The Spatio-Temporal Distribution of Sulfur Dioxide (SO2) with Copernicus Sentinel-5P Near Real Time in Medan City,” J. Geogr., vol. 16, no. 1, p. 101, 2024, doi: 10.24114/jg.v16i1.55297.

M. V. Deshpande, D. Pillai, V. V. Krishna, and M. Jain, “Detecting and quantifying zero tillage technology adoption in Indian smallholder systems using Sentinel-2 multi-spectral imagery,” Int. J. Appl. Earth Obs. Geoinf., vol. 128, no. November 2023, p. 103779, 2024, doi: 10.1016/j.jag.2024.103779.

D. van Dijk, S. Shoaie, T. van Leeuwen, and S. Veraverbeke, “Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data,” Int. J. Appl. Earth Obs. Geoinf., vol. 97, no. September 2020, p. 102296, 2021, doi: 10.1016/j.jag.2021.102296.

R. Farzanmanesh, K. Khoshelham, L. Volkova, S. Thomas, J. Ravelonjatovo, and C. J. Weston, “Quantifying Mangrove aboveground biomass changes: Analysis of conservation impact in blue forests projects using sentinel-2 satellite imagery,” For. Ecol. Manage., vol. 561, no. November 2023, p. 121920, 2024, doi: 10.1016/j.foreco.2024.121920.

A. Mullissa, J. Reiche, and M. Herold, “Deep learning and automatic reference label harvesting for Sentinel-1 SAR-based rapid tropical dry forest disturbance mapping,” Remote Sens. Environ., vol. 298, no. November 2022, p. 113799, 2023, doi: 10.1016/j.rse.2023.113799.

R. Al Shawabkeh et al., “Modeling the impact of urban land cover features and changes on the land surface temperature (LST): The case of Jordan,” Ain Shams Eng. J., vol. 15, no. 2, p. 102359, 2024, doi: 10.1016/j.asej.2023.102359.

M. Schwartz et al., “High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach,” Int. J. Appl. Earth Obs. Geoinf., vol. 128, no. January, 2024, doi: 10.1016/j.jag.2024.103711.

W. S. Moola, W. Bijker, M. Belgiu, and M. Li, “Vegetable mapping using fuzzy classification of Dynamic Time Warping distances from time series of Sentinel-1A images,” Int. J. Appl. Earth Obs. Geoinf., vol. 102, no. March, p. 102405, 2021, doi: 10.1016/j.jag.2021.102405.

Y. Du, P. M. Teillet, and J. Cihlar, “Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection,” Remote Sens. Environ., vol. 82, no. 1, pp. 123–134, 2002.

J. A. Richards and J. A. Richards, Remote sensing digital image analysis, vol. 5. Springer, 2022.

M. Kaisti, M. Altti, and T. Poutanen, “Radiometric resolution analysis and a simulation model,” Remote Sens., vol. 8, no. 2, p. 85, 2016.

S. Marino, “Understanding the spatio-temporal behavior of crop yield, yield components and weed pressure using time series Sentinel-2-data in an organic farming system,” Eur. J. Agron., vol. 145, no. January, p. 126785, 2023, doi: 10.1016/j.eja.2023.126785.

S. Lilis, Maddatuang, “Jurnal Environmental Scienc e,” J. Environ. Sci., vol. 3, no. 6, 2020.

A. E. Adeyemo, O. S. Omoba, A. I. Olagunju, and S. S. Josiah, “Assessment of nutritional values, phytochemical content, and antioxidant properties of Shallot (Allium ascalonicum L.) leaf and bulb,” Meas. Food, vol. 10, no. April, p. 100091, 2023, doi: 10.1016/j.meafoo.2023.100091.

K. L. Page, Y. P. Dang, and R. C. Dalal, “The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield,” Front. Sustain. food Syst., vol. 4, p. 31, 2020.

M. Getachew et al., “The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in southwest Ethiopia,” Agron. Sustain. Dev., vol. 42, no. 4, p. 61, 2022.

A. Liepa et al., “Harmonized NDVI time-series from Landsat and Sentinel-2 reveal phenological patterns of diverse, small-scale cropping systems in East Africa,” Remote Sens. Appl. Soc. Environ., vol. 35, 2024, doi: 10.1016/j.rsase.2024.101230.

A. Marcone, G. Impollonia, M. Croci, H. Blandinières, and S. Amaducci, “Estimation of above ground biomass, biophysical and quality parameters of spinach (Spinacia Oleracea L.) using Sentinel-2 to support the supply chain,” Sci. Hortic. (Amsterdam)., vol. 325, no. November 2023, 2024, doi: 10.1016/j.scienta.2023.112641.

V. A. Bento, C. M. Gouveia, C. C. DaCamara, R. Libonati, and I. F. Trigo, “The roles of NDVI and Land Surface Temperature when using the Vegetation Health Index over dry regions,” Glob. Planet. Change, vol. 190, p. 103198, 2020.

K. Mehmood et al., “Analyzing vegetation health dynamics across seasons and regions through NDVI and climatic variables,” Sci. Rep., vol. 14, no. 1, p. 11775, 2024.

N. E. Kimambo and V. C. Radeloff, “Using Landsat and Sentinel-2 spectral time series to detect East African small woodlots,” Sci. Remote Sens., vol. 8, no. August, p. 100096, 2023, doi: 10.1016/j.srs.2023.100096.

C. Karavina, J. D. Ibaba, and A. Gubba, “Detection and molecular analysis of shallot latent virus infecting Allium sativum in Zimbabwe,” Physiol. Mol. Plant Pathol., vol. 128, no. October, p. 102175, 2023, doi: 10.1016/j.pmpp.2023.102175.

C. Dupuis, A. Fayolle, J. F. Bastin, N. Latte, and P. Lejeune, “Monitoring selective logging intensities in central Africa with sentinel-1: A canopy disturbance experiment,” Remote Sens. Environ., vol. 298, no. September, 2023, doi: 10.1016/j.rse.2023.113828.

F. R. Basundari, E. Sulistyaningsih, R. H. Murti, and T. R. Nuringtyas, “Comparative metabolite profiling in single and multiple bulb cultivars of shallot (Allium cepa l. Aggregatum group),” J. Saudi Soc. Agric. Sci., no. xxxx, 2024, doi: 10.1016/j.jssas.2024.06.002.

T. Tampubolon, J. Yanti, R. Juliani, and J. Hutahaean, “The influence of Mount Sinabung eruption on the geothermal in Tinggi Raja Simalungun,” Phys. Chem. Earth, vol. 129, no. November 2022, p. 103290, 2023, doi: 10.1016/j.pce.2022.103290.

A. M. Abidin, M. R., Umar, R., Nur, R., Atjo, A. A., Yanti, J., Liani, “Identifikasi perubahan kawasan terbangun perkotaan menggunakan citra Landsat series,” Teknosains Media Inf. dan Teknol., vol. 17, pp. 335–340, 2023.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).