Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution

Van Giao Nguyen (1), Minh Ho Tran (2), Prabhu Paramasivam (3), Huu Cuong Le (4), Duy Tan Nguyen (5)
(1) Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
(2) Faculty of Automotive Engineering, Dong A University, Danang, Viet Nam
(3) Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India
(4) Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
(5) Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Fulltext View | Download
How to cite (IJASEIT) :
Nguyen , Van Giao, et al. “Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 268-86, doi:10.18517/ijaseit.14.1.17489.
Biomass, noted for its adaptability, has various applications in biofuel generation, industrial use, and environmental cleaning. This study looks into the multiple roles of biomass as a renewable energy source, with a particular emphasis on its vital contribution to biofuel production. Through a thorough evaluation of different conversion routes—thermal, biological, and physical—the study emphasizes thermochemical processes' efficiency, cost-effectiveness, and adaptability. Notably, technologies like gasification and quick pyrolysis are thoroughly investigated, followed by in-depth discussions of reactor optimization strategies to enhance performance and output. The complex structure of biomass, which is dominated by high-molecular-weight polysaccharides such as cellulose and hemicelluloses, demonstrates its significant potential for energy generation. Furthermore, the study categorizes biomass by content, origin, and conversion processes, resulting in a comprehensive inventory of available resources. Biomass from the agriculture and forestry industries, such as starch, sugar, lignocellulose, and organic wastes, is rigorously analyzed for energy production. Furthermore, various biomass processing techniques, including thermochemical, biochemical, and physicochemical conversions, are carefully tested in real-world applications to ensure their efficacy and viability. Beyond its importance in biofuel production, the article underlines biomass' versatility in satisfying industrial needs and contributing to environmental cleanup initiatives. This study lays the groundwork for informed decision-making and innovative solutions in various industries by providing a thorough understanding of biomass's various benefits and applications, including energy provision, industrial processes, and ecological restoration.

J. F. Villegas, G. V. Ochoa, and M. V. Chamorro, “Statistical Wind Energy Analysis and Wind Persistence Assessment for Cordoba And Sucre Departments’ Weather Stations in The Caribbean Region of Colombia,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 1760–1766, 2020, doi: 10.18517/ijaseit.10.5.6567.

I. K. Swardika, P. A. W. Santiary, I. B. I. Purnama, and I. W. Suasnawa, “Development of Green Zone Energy Mapping for Community-based Low Carbon Emissions,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2472–2477, 2020, doi:10.18517/ijaseit.10.6.12642.

A. T. Hoang, A. R. Al-Tawaha, Lan Anh Vu, Van Viet Pham, A. M. Qaisi, and J. Křeček, “Integrating Environmental Protection Education in the Curriculum: A Measure to Form Awareness of Environmental Protection for the Community,” in Environmental Sustainability Education for a Changing World, Cham: Springer International Publishing, 2021, pp. 191–207.

T. T. Le, J. C. Priya, H. C. Le, N. V. L. Le, T. B. N. Nguyen, and D. N. Cao, “Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability,” Int. J. Renew. Energy Dev., vol. 13, no. 2, 2024, doi:10.61435/ijred.2024.60119.

Z. Stelmasiak, J. Larisch, J. Pielecha, and D. Pietras, “Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas,” Polish Marit. Res., vol. 24, no. 2, pp. 96–104, Jun. 2017, doi:10.1515/pomr-2017-0055.

Y. Richardson, J. Blin, and A. Julbe, “A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts,” Prog. Energy Combust. Sci., vol. 38, no. 6, pp. 765–781, Dec. 2012, doi:10.1016/j.pecs.2011.12.001.

A. T. Hoang and V. T. Nguyen, “Emission characteristics of a diesel engine fuelled with preheated vegetable oil and biodiesel,” Philipp. J. Sci, vol. 146, no. 4, pp. 475–482, 2017.

T. A. Hoang and V. Van Le, “The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil,” Int. J. Renew. Energy Dev., vol. 6, no. 1, pp. 1–7, Mar. 2017, doi:10.14710/ijred.6.1.1-7.

W.-Y. Wong, S. Lim, Y.-L. Pang, S.-H. Shuit, W.-H. Chen, and K.-T. Lee, “Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production,” Sci. Total Environ., vol. 727, p. 138534, Jul. 2020, doi:10.1016/j.scitotenv.2020.138534.

N. U. Utami, M. Said, M. Faizal, and L. N. Komariah, “Conversion of palm oil mill effluent on biogas production with consortium bacteria,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 2035–2041, 2019, doi: 10.18517/ijaseit.9.6.10461.

J. L. Sawin et al., “Renewables 2013. Global status report 2013,” 2013.

J. Liu, R. Song, S. Nasreen, and A. T. Hoang, “Analysis of the complementary property of solar energy and thermal power based on coupling model,” Nat. Environ. Pollut. Technol., vol. 18, no. 5, 2019.

W.-H. Chen et al., “Two-stage optimization of three and four straight-bladed vertical axis wind turbines (SB-VAWT) based on Taguchi approach,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 1, p. 100025, 2021, doi: 10.1016/j.prime.2021.100025.

S. F. Ahmed et al., “Perovskite solar cells: Thermal and chemical stability improvement, and economic analysis,” Mater. Today Chem., p. 101284, 2023, doi: 10.1016/j.mtchem.2022.101284.

A. A. Salem and I. S. Seddiek, “Techno-Economic Approach to Solar Energy Systems Onboard Marine Vehicles,” Polish Maritime Research. 2016, doi: 10.1515/pomr-2016-0033.

E. Ciba, P. Dymarski, and M. Grygorowicz, “Heave Plates with Holes for Floating Offshore Wind Turbines,” Polish Marit. Res., vol. 29, no. 1, pp. 26–33, Mar. 2022, doi: 10.2478/pomr-2022-0003.

A. Shirole, M. Wagh, and V. Kulkarni, “Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids,” Int. J. Renew. Energy Dev., vol. 10, no. 4, pp. 875–889, Nov. 2021, doi: 10.14710/ijred.2021.33801.

A. T. Hoang and M. T. Pham, “Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2231–2240, 2018, doi:10.18517/ijaseit.8.5.5487.

V. H. Dong and P. Sharma, “Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments,” J. Emerg. Sci. Eng., vol. 1, no. 1, pp. 22–28, Sep. 2023, doi:10.61435/jese.2023.4.

M. Q. Chau, V. V Le, A. Al-Tawaha, A.T. Hoang, and V. V Pham, “A simulation research of heat transfers and chemical reactions in the fuel steam reformer using exhaust gas energy from motorcycle engine,” J. Mech. Eng. Res. Dev., vol. 43, no. 5, pp. 89–102, 2020.

M. Q. Chau, D. C. Nguyen, A. T. Hoang, Q. V. Tran, and V. V. Pham, “A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 1933–1938, Oct. 2020, doi: 10.18517/ijaseit.10.5.13051.

G. Labeckas, S. Slavinskas, J. Rudnicki, and R. Zadrąg, “The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine,” Polish Marit. Res., vol. 25, no. 1, pp. 108–120, Mar. 2018, doi: 10.2478/pomr-2018-0013.

R. Zhao et al., “A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines,” Polish Marit. Res., vol. 27, no. 4, pp. 80–90, Dec. 2020, doi: 10.2478/pomr-2020-0068.

Q. B. Doan, X. P. Nguyen, T. M. H. Dong, M. T. Pham, and T. S. Le, “Performance and emission characteristics of diesel engine using ether additives: A review,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 255–274, 2022.

A. T. Hoang and V. D. Tran, “Experimental Analysis on the Ultrasound-based Mixing Technique Applied to Ultra-low Sulphur Diesel and Bio-oils,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, p. 307, Feb. 2019, doi: 10.18517/ijaseit.9.1.7890.

M. Norhafana et al., “A review of the performance and emissions of nano additives in diesel fuelled compression ignition-engines,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 469, no. 1, doi: 10.1088/1757-899X/469/1/012035.

I. A. Fernández, M. R. Gómez, J. R. Gómez, and L. M. López-González, “Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System,” Polish Marit. Res., vol. 27, no. 1, pp. 83–95, Mar. 2020, doi: 10.2478/pomr-2020-0009.

L. Changxiong, Y. Hu, Z. Yang, and H. Guo, “Experimental Study of Fuel Combustion and Emission Characteristics of Marine Diesel Engines Using Advanced Fuels,” Polish Marit. Res., vol. 30, no. 3, pp. 48–58, Sep. 2023, doi: 10.2478/pomr-2023-0038.

A. Sarkar and U. K. Saha, “Role of global fuel-air equivalence ratio and preheating on the behaviour of a biogas driven dual fuel diesel engine,” Fuel, vol. 232, pp. 743–754, Nov. 2018, doi:10.1016/j.fuel.2018.06.016.

T. B. N. Nguyen and N. V. L. Le, “Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review,” J. Emerg. Sci. Eng., vol. 1, no. 1, pp. 6–13, Sep. 2023, doi: 10.61435/jese.2023.2.

J. Grafmüller et al., “Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance,” ACS Sustain. Chem. Eng., vol. 10, no. 8, pp. 2720–2729, Feb. 2022, doi: 10.1021/acssuschemeng.1c07694.

J. Jose Mayans, J. A. Torrent-Bravo, and L. Lopéz, “Energy Use of Mediterranean Forest Biomass in Sustainable Public Heating Systems and its Effects on Climate Change-Case of Study.,” Int. J. Renew. Energy Dev., vol. 10, no. 2, 2021.

A. Yousuf, D. Pirozzi, and F. Sannino, “Fundamentals of lignocellulosic biomass,” in Lignocellulosic Biomass to Liquid Biofuels, Elsevier, 2020, pp. 1–15.

C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, and J. Beltramini, “Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels,” Chem. Soc. Rev., vol. 40, no. 11, pp. 5588–5617, 2011.

T. Kalak, “Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future,” Energies, vol. 16, no. 4, p. 1783, Feb. 2023, doi: 10.3390/en16041783.

A. J. Hunt, E. H. K. Sin, R. Marriott, and J. H. Clark, “Generation, Capture, and Utilization of Industrial Carbon Dioxide,” ChemSusChem, vol. 3, no. 3, pp. 306–322, Mar. 2010, doi:10.1002/cssc.200900169.

D. M. Kongnine et al., “Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells,” Int. J. Renew. Energy Dev., vol. 9, no. 1, pp. 29–35, 2020.

Desniorita, N. Nazir, Novelina, and K. Sayuti, “Sustainable design of biorefinery processes on cocoa pod: Optimization of pectin extraction process with variations of pH, temperature, and time,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 2104–2113, 2019, doi:10.18517/ijaseit.9.6.10670.

G. S. Tkemaladze and K. A. Makhashvili, “Climate changes and photosynthesis,” Ann. Agrar. Sci., vol. 14, no. 2, pp. 119–126, Jun. 2016, doi: 10.1016/j.aasci.2016.05.012.

Y. Kalinci, A. Hepbasli, and I. Dincer, “Biomass-based hydrogen production: A review and analysis,” Int. J. Hydrogen Energy, vol. 34, no. 21, pp. 8799–8817, Nov. 2009, doi:10.1016/j.ijhydene.2009.08.078.

M. Megawati, Z. A. S. Bahlawan, A. Damayanti, R. D. A. Putri, B. Triwibowo, and H. Prasetiawan, “Comparative Study on the Various Hydrolysis and Fermentation Methods of Chlorella vulgaris Biomass for the Production of Bioethanol,” Int. J. Renew. Energy Dev., vol. 11, no. 2, pp. 515–522, May 2022, doi: 10.14710/ijred.2022.41696.

Y. P. Situmeang, I. D. N. Sudita, and M. Suarta, “Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 2088–2095, 2019, doi: 10.18517/ijaseit.9.6.10345.

A. Tursi, “A review on biomass: importance, chemistry, classification, and conversion,” Biofuel Res. J., vol. 6, no. 2, pp. 962–979, Jun. 2019, doi: 10.18331/BRJ2019.6.2.3.

P. Sharma, M. Sivaramakrishnaiah, B. Deepanraj, R. Saravanan, and M. V. Reddy, “A novel optimization approach for biohydrogen production using algal biomass,” Int. J. Hydrogen Energy, vol. 52, pp. 94–103, Jan. 2024, doi: 10.1016/j.ijhydene.2022.09.274.

I. D. N. Sudita, Y. P. Situmeang, and M. Suarta, “Compost and Biochar Characteristics Test of Some Animal Manure Waste,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 1, pp. 266–271, 2021, doi: 10.18517/ijaseit.11.1.11346.

A. O. Onokwai, I. P. Okokpujie, E. S. Ajisegiri, M. Oki, A. O. Adeoyeb, and E. T. Akinlabi, “Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 973–981, Nov. 2022, doi: 10.14710/ijred.2022.45549.

R. K. Srivastava, N. P. Shetti, K. R. Reddy, E. E. Kwon, M. N. Nadagouda, and T. M. Aminabhavi, “Biomass utilization and production of biofuels from carbon neutral materials,” Environ. Pollut., vol. 276, p. 116731, May 2021, doi:10.1016/j.envpol.2021.116731.

M. Ali, M. Saleem, Z. Khan, and I. A. Watson, “The use of crop residues for biofuel production,” in Biomass, Biopolymer-Based Materials, and Bioenergy, vol. 27, Elsevier, 2019, pp. 369–395.

A. Demirbas, “Biofuels sources, biofuel policy, biofuel economy and global biofuel projections,” Energy Convers. Manag., vol. 49, no. 8, pp. 2106–2116, Aug. 2008, doi: 10.1016/j.enconman.2008.02.020.

K. Parmar, “Biomass- An Overview on Composition Characteristics and Properties,” IRA-International J. Appl. Sci. (ISSN 2455-4499), vol. 7, no. 1, p. 42, May 2017, doi: 10.21013/jas.v7.n1.p4.

E. Martinez-Hernandez, M. A. Amezcua-Allieri, and J. Aburto, “Assessing the Cost of Biomass and Bioenergy Production in Agroindustrial Processes,” Energies, vol. 14, no. 14, p. 4181, Jul. 2021, doi: 10.3390/en14144181.

A. Zucaro, G. Fiorentino, and S. Ulgiati, “Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuels and biochemicals,” in Lignocellulosic Biomass to Liquid Biofuels, Elsevier, 2020, pp. 249–282.

S. Nakada, D. Saygin, and D. Gielen, “Global bioenergy: supply and demand projections,” Int. Renew. Energy Agency (IRENA), Abu Dhabi, 2014.

Aisman, Santosa, R. A. Hadiguna, and N. Nazir, “Design of Sustainable Agricultural-Based Biomass Electrification Model in the Islands Area: Prospect of Bamboo Biomass,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 2145–2151, 2020, doi:10.18517/ijaseit.10.5.13421.

S. Hasibuan, H. Adiyatna, I. Widowati, and J. Kandasamy, “Feasibility Analysis of Compact-Mobile Biomass Pallet Technology as Renewable Fuel for Small and Medium Industries,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2484–2490, 2020, doi:10.18517/ijaseit.10.6.13775.

T. B. Johansson, N. Nakicenovic, A. Patwardhan, and L. Gomez-Echeverri, Eds., Global Energy Assessment (GEA). Cambridge: Cambridge University Press, 2012.

IPCC, “Summary for Policymakers,” in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, p. 32.

A. Y. Kian and S. C. Lim, “On the Potential of Solar Energy for Chemical and Metal Manufacturing Plants in Malaysia,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 5, pp. 1898–1904, 2023, doi:10.18517/ijaseit.13.5.19052.

European Commission, “Proposal for a Directive of The European Parliament and of The Council amending Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources, Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on.” p. 26, 2022.

E. Gnansounou, “Coproducts performances in biorefineries: Development of Claiming-based allocation models for environmental policy,” Bioresour. Technol., vol. 254, pp. 31–39, Apr. 2018, doi:10.1016/j.biortech.2018.01.052.

X. Liu et al., “Heterogeneous photocatalytic conversion of biomass to biofuels: A review,” Chem. Eng. J., vol. 476, p. 146794, Nov. 2023, doi: 10.1016/j.cej.2023.146794.

G. Velvizhi, P. J. Jacqueline, N. P. Shetti, L. K, G. Mohanakrishna, and T. M. Aminabhavi, “Emerging trends and advances in valorization of lignocellulosic biomass to biofuels,” J. Environ. Manage., vol. 345, p. 118527, Nov. 2023, doi: 10.1016/j.jenvman.2023.118527.

T. Sundaram et al., “Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight,” Bioengineered, vol. 14, no. 1, Dec. 2023, doi:10.1080/21655979.2023.2252228.

N. Srivastava et al., “Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach,” Bioresour. Technol., vol. 369, p. 128471, Feb. 2023, doi: 10.1016/j.biortech.2022.128471.

M. H. Naveed et al., “Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches,” Renew. Sustain. Energy Rev., vol. 189, p. 113906, Jan. 2024, doi:10.1016/j.rser.2023.113906.

M. Rafidah et al., “Unlocking the potential of lignocellulosic biomass in road construction: A brief review of OPF,” Mater. Today Proc., Jan. 2023, doi: 10.1016/j.matpr.2023.01.103.

S. K. Amran, A. L. Sazali, N. Abd-Talib, K. F. Pa’ee, M. R. Anuar, and T.-L. K. Yong, “Carbon Fibre Precursor from Oil Palm Biomass Lignin,” 2023, pp. 1–12.

Y. Lan, Q. Du, C. Tang, K. Cheng, and F. Yang, “Application of typical artificial carbon materials from biomass in environmental remediation and improvement: A review,” J. Environ. Manage., vol. 296, p. 113340, Oct. 2021, doi: 10.1016/j.jenvman.2021.113340.

S. Girijan and M. Kumar, “Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation,” Curr. Opin. Environ. Sci. Heal., vol. 12, pp. 18–29, Dec. 2019, doi: 10.1016/j.coesh.2019.08.005.

V. M. Montori, N. L. Wilczynski, D. Morgan, and R. B. Haynes, “Optimal search strategies for retrieving systematic reviews from Medline: analytical survey,” BMJ, vol. 330, no. 7482, p. 68, Jan. 2005, doi: 10.1136/bmj.38336.804167.47.

W. M. Bramer, G. B. De Jonge, M. L. Rethlefsen, F. Mast, and J. Kleijnen, “A systematic approach to searching: an efficient and complete method to develop literature searches,” J. Med. Libr. Assoc., vol. 106, no. 4, Oct. 2018, doi: 10.5195/jmla.2018.283.

A. I. Osman et al., “Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis,” Environ. Chem. Lett., vol. 21, no. 3, pp. 1315–1379, Jun. 2023, doi: 10.1007/s10311-023-01581-7.

S. Manikandan, R. Subbaiya, M. Biruntha, R. Y. Krishnan, G. Muthusamy, and N. Karmegam, “Recent development patterns, utilization and prospective of biofuel production: Emerging nanotechnological intervention for environmental sustainability – A review,” Fuel, vol. 314, p. 122757, Apr. 2022, doi:10.1016/j.fuel.2021.122757.

S. K. Sansaniwal, M. A. Rosen, and S. K. Tyagi, “Global challenges in the sustainable development of biomass gasification: An overview,” Renew. Sustain. Energy Rev., vol. 80, pp. 23–43, 2017.

V. S. Sikarwar, M. Zhao, P. S. Fennell, N. Shah, and E. J. Anthony, “Progress in biofuel production from gasification,” Prog. Energy Combust. Sci., vol. 61, pp. 189–248, Jul. 2017, doi:10.1016/j.pecs.2017.04.001.

H. S. Wald, J. M. Borkan, J. S. Taylor, D. Anthony, and S. P. Reis, “Fostering and Evaluating Reflective Capacity in Medical Education: Developing the REFLECT Rubric for Assessing Reflective Writing,” Acad. Med., vol. 87, no. 1, pp. 41–50, Jan. 2012, doi:10.1097/ACM.0b013e31823b55fa.

M. J. Willemink et al., “Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality,” Eur. Radiol., vol. 23, no. 6, pp. 1632–1642, Jun. 2013, doi: 10.1007/s00330-012-2764-z.

M. Templier and G. Paré, “Transparency in literature reviews: an assessment of reporting practices across review types and genres in top IS journals,” Eur. J. Inf. Syst., vol. 27, no. 5, pp. 503–550, Sep. 2018, doi: 10.1080/0960085X.2017.1398880.

B. Hilligoss and S. Y. Rieh, “Developing a unifying framework of credibility assessment: Construct, heuristics, and interaction in context,” Inf. Process. Manag., vol. 44, no. 4, pp. 1467–1484, Jul. 2008, doi: 10.1016/j.ipm.2007.10.001.

M. Gusenbauer and N. R. Haddaway, “What every researcher should know about searching – clarified concepts, search advice, and an agenda to improve finding in academia,” Res. Synth. Methods, vol. 12, no. 2, pp. 136–147, Mar. 2021, doi: 10.1002/jrsm.1457.

M. Orellano and S. Tiss, “Impacts of Digital Transformation on Supply Chain Sustainability: A Systematic Literature Review and Expert Assessment,” 2022, pp. 390–405.

F. A. Putro, S. H. Pranolo, J. Waluyo, and A. Setyawan, “Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant,” Int. J. Renew. Energy Dev., vol. 9, no. 2, pp. 311–317, Jul. 2020, doi: 10.14710/ijred.9.2.311-317.

P. Sittisun, N. Tippayawong, and S. Shimpalee, “Gasification of Pelletized Corn Residues with Oxygen Enriched Air and Steam,” Int. J. Renew. Energy Dev., vol. 8, no. 3, pp. 215–224, Oct. 2019, doi:10.14710/ijred.8.3.215-224.

A. C. Minh Loy et al., “Optimization Study of Syngas Production from Catalytic Air Gasification of Rice Husk,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 1784–1791, 2020, doi:10.18517/ijaseit.10.5.9906.

M. Mohamed Nazari, C. Pooi San, and N. Amira Atan, “Combustion Performance of Biomass Composite Briquette from Rice Husk and Banana Residue,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 455–460, 2019.

T. K. Tulu, S. M. Atnaw, R. D. Bededa, D. G. Wakshume, and V. R. Ancha, “Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 1043–1059, Nov. 2022, doi: 10.14710/ijred.2022.45179.

A. T. Hoang and D. C. Nguyen, “Properties of DMF-fossil gasoline RON95 blends in the consideration as the alternative fuel,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, pp. 2555–2560, 2018.

M. S. Singhvi and D. V. Gokhale, “Lignocellulosic biomass: Hurdles and challenges in its valorization,” Appl. Microbiol. Biotechnol., vol. 103, no. 23–24, pp. 9305–9320, Dec. 2019, doi: 10.1007/s00253-019-10212-7.

S. Sharma et al., “Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products,” Environments, vol. 10, no. 1, p. 6, Dec. 2022, doi: 10.3390/environments10010006.

T. Bhaskar, B. Bhavya, R. Singh, D. V. Naik, A. Kumar, and H. B. Goyal, “Thermochemical Conversion of Biomass to Biofuels,” in Biofuels, Elsevier, 2011, pp. 51–77.

F. Güleç et al., “Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU : A focus on thermochemical conversion processes,” Biofuels, Bioprod. Biorefining, Oct. 2023, doi: 10.1002/bbb.2544.

A. Gil, “Challenges on waste-to-energy for the valorization of industrial wastes: Electricity, heat and cold, bioliquids and biofuels,” Environ. Nanotechnology, Monit. Manag., vol. 17, p. 100615, May 2022, doi: 10.1016/j.enmm.2021.100615.

M. Jahirul, M. Rasul, A. Chowdhury, and N. Ashwath, “Biofuels Production through Biomass Pyrolysis —A Technological Review,” Energies, vol. 5, no. 12, pp. 4952–5001, Nov. 2012, doi:10.3390/en5124952.

S. Jamilatun, B. Budhijanto, R. Rochmadi, A. Yuliestyan, H. Hadiyanto, and A. Budiman, “Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues,” Int. J. Renew. Energy Dev., vol. 8, no. 2, pp. 133–140, Jun. 2019, doi:10.14710/ijred.8.2.133-140.

N. Hodžić and K. Kadic, “Co-firing of coal and woody biomass under conditions of reburning technology with natural gas,” Int. J. Renew. Energy Dev., vol. 12, no. 3, pp. 440–447, May 2023, doi:10.14710/ijred.2023.50250.

T. K. Dada, M. Sheehan, S. Murugavelh, and E. Antunes, “A review on catalytic pyrolysis for high-quality bio-oil production from biomass,” Biomass Convers. Biorefinery, vol. 13, no. 4, pp. 2595–2614, Feb. 2023, doi: 10.1007/s13399-021-01391-3.

Z. Rahimi, A. Anand, and S. Gautam, “An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes,” Energy Nexus, vol. 7, p. 100125, Sep. 2022, doi: 10.1016/j.nexus.2022.100125.

J. Escalante et al., “Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach,” Renew. Sustain. Energy Rev., vol. 169, p. 112914, Nov. 2022, doi:10.1016/j.rser.2022.112914.

A. K. Tiwari, P. R. Chauhan, D. B. Pal, and S. K. Jana, “Biomass Valorization as Energy Production Using Waste Biomass,” 2023, pp. 29–50.

A. K. Varma, R. Shankar, and P. Mondal, “A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation,” in Recent Advancements in Biofuels and Bioenergy Utilization, Singapore: Springer Singapore, 2018, pp. 227–259.

C. Z. Zaman et al., Pyrolysis: a sustainable way to generate energy from waste, vol. 1. IntechOpen Rijeka, Croatia, 2017.

G. Wang et al., “A Review of Recent Advances in Biomass Pyrolysis,” Energy & Fuels, vol. 34, no. 12, pp. 15557–15578, Dec. 2020, doi:10.1021/acs.energyfuels.0c03107.

A. K. Vuppaladadiyam et al., “A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges,” J. Energy Inst., vol. 108, p. 101236, Jun. 2023, doi:10.1016/j.joei.2023.101236.

D. Hu et al., “Insight into the biomass pyrolysis volatiles reaction with an iron-based oxygen carrier in a two-stage fixed-bed reactor,” Chem. Eng. J., vol. 465, p. 142860, Jun. 2023, doi:10.1016/j.cej.2023.142860.

V. G. Nguyen et al., “Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy,” Biofuels, Bioprod. Biorefining, Feb. 2024, doi: 10.1002/bbb.2596.

J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geosci. Front., vol. 15, no. 2, p. 101757, Mar. 2024, doi:10.1016/j.gsf.2023.101757.

M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization,” Renew. Sustain. Energy Rev., vol. 139, p. 110691, Apr. 2021, doi: 10.1016/j.rser.2020.110691.

D. S. Powlson, A. B. Riche, and I. Shield, “Biofuels and other approaches for decreasing fossil fuel emissions from agriculture,” Ann. Appl. Biol., vol. 146, no. 2, pp. 193–201, Mar. 2005, doi:10.1111/j.1744-7348.2005.040056.x.

P. Li et al., “Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review,” J. Energy Inst., vol. 110, p. 101315, Oct. 2023, doi: 10.1016/j.joei.2023.101315.

H. Iyodo Mohammed, K. Garba, S. Isa Ahmed, and L. Garba Abubakar, “Recent advances on strategies for upgrading biomass pyrolysis vapour to value-added bio-oils for bioenergy and chemicals,” Sustain. Energy Technol. Assessments, vol. 55, p. 102984, Feb. 2023, doi: 10.1016/j.seta.2022.102984.

T. Y. A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, and R. E. Abou-Zeid, “Biomass pyrolysis: past, present, and future,” Environ. Dev. Sustain., vol. 22, no. 1, pp. 17–32, Jan. 2020, doi:10.1007/s10668-018-0200-5.

H. C. Park and H. S. Choi, “Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction,” Renew. Energy, 2019, doi: 10.1016/j.renene.2019.05.072.

Y. Zhong, Y. Ding, K. Lu, S. Mao, and C. Li, “Kinetic parameters and reaction mechanism study of biomass pyrolysis by combined kinetics coupled with a heuristic optimization algorithm,” Fuel, vol. 334, p. 126622, Feb. 2023, doi: 10.1016/j.fuel.2022.126622.

L. Cai et al., “Numerical simulation and multi-process coupling analysis for biomass pyrolysis fluidized bed reactor based on synergistic effects between biomass and nitrogen inlet modes,” J. Anal. Appl. Pyrolysis, vol. 169, p. 105801, Jan. 2023, doi:10.1016/j.jaap.2022.105801.

M. M. Noor, X. D. Pham, and A. T. Hoang, “Comparative analysis on performance and emission characteristic of diesel engine fueled with heated coconut oil and diesel fuel,” Int. J. Automot. Mech. Eng., vol. 15, no. 1, pp. 5110–5125, 2018, doi:10.15282/ijame.15.1.2018.16.0395.

A. T. Hoang, Q. V. Tran, and X. D. Pham, “Performance and Emission Characteristics of Popular 4-Stroke Motorcycle Engine in Vietnam Fuelled with Biogasoline Compared with Fossil Gasoline,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 02, pp. 97–103, 2018.

N. Rajendran, D. Kang, J. Han, and B. Gurunathan, “Process optimization, economic and environmental analysis of biodiesel production from food waste using a citrus fruit peel biochar catalyst,” J. Clean. Prod., vol. 365, p. 132712, Sep. 2022, doi:10.1016/j.jclepro.2022.132712.

S. S. Arumugamurthi, P. Sivanandi, and S. Kandasamy, “Biodiesel production from non-edible crops using waste tyre heterogeneous acid catalyst,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 3223–3238, 2022.

A. Soria-Verdugo, E. Cano-Pleite, A. Passalacqua, and R. O. Fox, “Effect of particle shape on biomass pyrolysis in a bubbling fluidized bed,” Fuel, vol. 339, p. 127365, May 2023, doi:10.1016/j.fuel.2022.127365.

D. C. Makepa, C. H. Chihobo, and D. Musademba, “Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass,” Biofuels, vol. 14, no. 5, pp. 529–550, May 2023, doi:10.1080/17597269.2022.2151459.

I. G. Hakeem et al., “Techno‐economic analysis of biochemical conversion of biomass to biofuels and platform chemicals,” Biofuels, Bioprod. Biorefining, vol. 17, no. 3, pp. 718–750, May 2023, doi:10.1002/bbb.2463.

M. C. Ncibi, B. Mahjoub, O. Mahjoub, and M. Sillanpää, “Remediation of Emerging Pollutants in Contaminated Wastewater and Aquatic Environments: Biomass‐Based Technologies,” CLEAN – Soil, Air, Water, vol. 45, no. 5, May 2017, doi:10.1002/clen.201700101.

L. Zhang, Z. Bao, S. Xia, Q. Lu, and K. Walters, “Catalytic Pyrolysis of Biomass and Polymer Wastes,” Catalysts, vol. 8, no. 12, p. 659, Dec. 2018, doi: 10.3390/catal8120659.

Y. Zhang et al., “A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades,” Fuel, vol. 347, p. 128461, Sep. 2023, doi:10.1016/j.fuel.2023.128461.

A. Shafizadeh et al., “A critical review of the use of nanomaterials in the biomass pyrolysis process,” J. Clean. Prod., vol. 400, p. 136705, May 2023, doi: 10.1016/j.jclepro.2023.136705.

V. N. Nguyen et al., “Biochar‐based catalysts derived from biomass waste: production, characterization, and application for liquid biofuel synthesis,” Biofuels, Bioprod. Biorefining, Feb. 2024, doi:10.1002/bbb.2593.

Y. Wang et al., “Volatile-char interactions during biomass pyrolysis: Effect of biomass acid-washing pretreatment,” Fuel, vol. 340, p. 127496, May 2023, doi: 10.1016/j.fuel.2023.127496.

S. Nagappan et al., “Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review,” Fuel, vol. 285, p. 119053, Feb. 2021, doi: 10.1016/j.fuel.2020.119053.

Y. Hu, M. Gong, S. Feng, C. (Charles) Xu, and A. Bassi, “A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production,” Renew. Sustain. Energy Rev., vol. 101, pp. 476–492, Mar. 2019, doi:10.1016/j.rser.2018.11.037.

S. S. Toor, L. Rosendahl, and A. Rudolf, “Hydrothermal liquefaction of biomass: A review of subcritical water technologies,” Energy, vol. 36, no. 5, pp. 2328–2342, May 2011, doi:10.1016/j.energy.2011.03.013.

D. R. Vardon et al., “Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge,” Bioresour. Technol., vol. 102, no. 17, pp. 8295–8303, Sep. 2011, doi: 10.1016/j.biortech.2011.06.041.

M. R. Atelge et al., “A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery,” Fuel, vol. 270, p. 117494, Jun. 2020, doi: 10.1016/j.fuel.2020.117494.

P. Duan and P. E. Savage, “Upgrading of crude algal bio-oil in supercritical water,” Bioresour. Technol., vol. 102, no. 2, pp. 1899–1906, Jan. 2011, doi: 10.1016/j.biortech.2010.08.013.

A. Swetha, S. ShriVigneshwar, K. P. Gopinath, R. Sivaramakrishnan, R. Shanmuganathan, and J. Arun, “Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery,” Chemosphere, vol. 283, p. 131248, Nov. 2021, doi: 10.1016/j.chemosphere.2021.131248.

X. Zhuang, J. Liu, C. Wang, Q. Zhang, and L. Ma, “A review on the stepwise processes of hydrothermal liquefaction (HTL): Recovery of nitrogen sources and upgrading of biocrude,” Fuel, vol. 313, p. 122671, Apr. 2022, doi: 10.1016/j.fuel.2021.122671.

M. H. Kamani et al., “Advances in plant materials, food by-products, and algae conversion into biofuels: use of environmentally friendly technologies,” Green Chem., vol. 21, no. 12, pp. 3213–3231, 2019, doi: 10.1039/C8GC03860K.

B. Bharathiraja et al., “Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products,” Renew. Sustain. Energy Rev., vol. 47, pp. 634–653, Jul. 2015, doi:10.1016/j.rser.2015.03.047.

M. Elhassan, R. Abdullah, M. R. R. Kooh, and Y.-F. Chou Chau, “Hydrothermal liquefaction: A technological review on reactor design and operating parameters,” Bioresour. Technol. Reports, vol. 21, p. 101314, Feb. 2023, doi: 10.1016/j.biteb.2022.101314.

B. Hao, D. Xu, G. Jiang, T. A. Sabri, Z. Jing, and Y. Guo, “Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude,” Green Chem., vol. 23, no. 4, pp. 1562–1583, 2021, doi: 10.1039/D0GC02893B.

V. S. Amar et al., “Hydrothermal liquefaction (HTL) processing of unhydrolyzed solids (UHS) for hydrochar and its use for asymmetric supercapacitors with mixed (Mn,Ti)-Perovskite oxides,” Renew. Energy, vol. 173, pp. 329–341, Aug. 2021, doi:10.1016/j.renene.2021.03.126.

Y. Han, K. Hoekman, U. Jena, and P. Das, “Use of Co-Solvents in Hydrothermal Liquefaction (HTL) of Microalgae,” Energies, vol. 13, no. 1, p. 124, Dec. 2019, doi: 10.3390/en13010124.

N. Akiya and P. E. Savage, “Roles of water for chemical reactions in high-temperature water,” Chem. Rev., vol. 102, no. 8, pp. 2725–2750, 2002.

L. J. Sealock, D. C. Elliott, E. G. Baker, and R. S. Butner, “Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments,” Ind. Eng. Chem. Res., vol. 32, no. 8, pp. 1535–1541, Aug. 1993, doi: 10.1021/ie00020a001.

A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues,” Comput. Networks, vol. 144, pp. 17–39, Oct. 2018, doi:10.1016/j.comnet.2018.07.017.

D. Ismail, M. Rahman, and A. Saifullah, “Low-power wide-area networks,” in Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking, Jan. 2018, pp. 1–6, doi: 10.1145/3170521.3170529.

D. Reißmann, D. Thrän, and A. Bezama, “Hydrothermal processes as treatment paths for biogenic residues in Germany: A review of the technology, sustainability and legal aspects,” J. Clean. Prod., vol. 172, pp. 239–252, Jan. 2018, doi: 10.1016/j.jclepro.2017.10.151.

X. Zhang, X. Li, R. Li, and Y. Wu, “Hydrothermal Carbonization and Liquefaction of Sludge for Harmless and Resource Purposes: A Review,” Energy & Fuels, vol. 34, no. 11, pp. 13268–13290, Nov. 2020, doi: 10.1021/acs.energyfuels.0c02467.

A. D. Kharisma, Y. Amekan, S. Sarto, and M. N. Cahyanto, “Effect of Hydrogen Peroxide on Hydrogen Production from Melon Fruit (Cucumis melo L.) Waste by Anaerobic Digestion Microbial Community,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 95–101, Feb. 2022, doi: 10.14710/ijred.2022.40883.

S. S. Idris, M. I. Zailan, N. Azron, and N. Abd Rahman, “Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics,” Int. J. Renew. Energy Dev., vol. 10, no. 3, pp. 425–433, Aug. 2021, doi:10.14710/ijred.2021.33101.

R. Sirohi et al., “Emerging trends in role and significance of biochar in gaseous biofuels production,” Environ. Technol. Innov., vol. 30, p. 103100, May 2023, doi: 10.1016/j.eti.2023.103100.

P. M. Christy, L. R. Gopinath, and D. Divya, “A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms,” Renew. Sustain. Energy Rev., vol. 34, pp. 167–173, 2014.

V. A. Vavilin, B. Fernandez, J. Palatsi, and X. Flotats, “Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview,” Waste Manag., vol. 28, no. 6, pp. 939–951, 2008.

J. Liebetrau, H. Sträuber, J. Kretzschmar, V. Denysenko, and M. Nelles, “Anaerobic digestion,” Biorefineries, pp. 281–299, 2019.

Y. Benyahya, A. Fail, A. Alali, and M. Sadik, “Recovery of Household Waste by Generation of Biogas as Energy and Compost as Bio-Fertilizer—A Review,” Processes, vol. 10, no. 1, p. 81, Dec. 2021, doi: 10.3390/pr10010081.

J. A. Modestra, R. Katakojwala, and S. V. Mohan, “CO2 fermentation to short chain fatty acids using selectively enriched chemolithoautotrophic acetogenic bacteria,” Chem. Eng. J., vol. 394, p. 124759, 2020.

S. Harirchi et al., “Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review,” Bioengineered, vol. 13, no. 3, pp. 6521–6557, 2022.

A. Bose et al., “Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system,” Renew. Sustain. Energy Rev., vol. 170, p. 112960, Dec. 2022, doi:10.1016/j.rser.2022.112960.

K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 76, pp. 1485–1496, Sep. 2017, doi: 10.1016/j.rser.2016.11.184.

H. Sun, E. Wang, X. Li, X. Cui, J. Guo, and R. Dong, “Potential biomethane production from crop residues in China: Contributions to carbon neutrality,” Renew. Sustain. Energy Rev., vol. 148, p. 111360, Sep. 2021, doi: 10.1016/j.rser.2021.111360.

J. Frigon and S. R. Guiot, “Biomethane production from starch and lignocellulosic crops: a comparative review,” Biofuels, Bioprod. Biorefining, vol. 4, no. 4, pp. 447–458, Jul. 2010, doi:10.1002/bbb.229.

C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresour. Technol., vol. 215, pp. 304–313, Sep. 2016, doi: 10.1016/j.biortech.2016.03.074.

M. Alruqi and P. Sharma, “Biomethane Production from the Mixture of Sugarcane Vinasse, Solid Waste and Spent Tea Waste: A Bayesian Approach for Hyperparameter Optimization for Gaussian Process Regression,” Fermentation, vol. 9, no. 2, p. 120, Jan. 2023, doi:10.3390/fermentation9020120.

M. E. Himmel et al., “Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production,” Science (80-. )., vol. 315, no. 5813, pp. 804–807, Feb. 2007, doi: 10.1126/science.1137016.

H. S. Ng, P. E. Kee, H. S. Yim, P. T. Chen, Y. H. Wei, and J. Chi-Wei Lan, “Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts,” Bioresour. Technol., vol. 302, p. 122889, 2020, doi:10.1016/j.biortech.2020.122889.

A. Nayak and B. Bhushan, “An overview of the recent trends on the waste valorization techniques for food wastes,” J. Environ. Manage., vol. 233, pp. 352–370, Mar. 2019, doi:10.1016/j.jenvman.2018.12.041.

H. Hadiyanto et al., “Preliminary Observation of Biogas Production from a Mixture of Cattle Manure and Bagasse Residue in Different Composition Variations,” Int. J. Renew. Energy Dev., vol. 12, no. 2, pp. 390–395, Mar. 2023, doi: 10.14710/ijred.2023.52446.

Đ. Kovačić, Z. Lončarić, J. Jović, D. Samac, B. Popović, and M. Tišma, “Digestate Management and Processing Practices: A Review,” Appl. Sci., vol. 12, no. 18, p. 9216, Sep. 2022, doi:10.3390/app12189216.

S. Chozhavendhan et al., “Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: A review,” Environ. Res., vol. 216, p. 114526, Jan. 2023, doi:10.1016/j.envres.2022.114526.

K. Chojnacka and K. Moustakas, “Anaerobic digestate management for carbon neutrality and fertilizer use: A review of current practices and future opportunities,” Biomass and Bioenergy, vol. 180, p. 106991, Jan. 2024, doi: 10.1016/j.biombioe.2023.106991.

M. E. Castelao Caruana, “Organizational and economic modeling of an anaerobic digestion system to treat cattle manure and produce electrical energy in Argentina’s feedlot sector,” J. Clean. Prod., vol. 208, pp. 1613–1621, Jan. 2019, doi: 10.1016/j.jclepro.2018.10.133.

A. Pfluger et al., “Anaerobic digestion and biogas beneficial use at municipal wastewater treatment facilities in Colorado: A case study examining barriers to widespread implementation,” J. Clean. Prod., vol. 206, pp. 97–107, Jan. 2019, doi: 10.1016/j.jclepro.2018.09.161.

M. Kranert, S. Kusch, J. Huang, and K. Fischer, “Anaerobic Digestion of Waste,” 2012, pp. 107–135.

A. K. Agarwal and N. N. Mustafi, “Real-world automotive emissions: Monitoring methodologies, and control measures,” Renew. Sustain. Energy Rev., vol. 137, p. 110624, Mar. 2021, doi:10.1016/j.rser.2020.110624.

T. G. Vlachos, P. Bonnel, A. Perujo, M. Weiss, P. Mendoza Villafuerte, and F. Riccobono, “In-Use Emissions Testing with Portable Emissions Measurement Systems (PEMS) in the Current and Future European Vehicle Emissions Legislation: Overview, Underlying Principles and Expected Benefits,” SAE Int. J. Commer. Veh., vol. 7, no. 1, pp. 2014-01–1549, Apr. 2014, doi: 10.4271/2014-01-1549.

M. Pydimalla, H. V. Chirravuri, and A. N. Uttaravalli, “An overview on non-wood fiber characteristics for paper production: Sustainable management approach,” Mater. Today Proc., Aug. 2023, doi:10.1016/j.matpr.2023.08.278.

R. S. Varma, “Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications,” ACS Sustain. Chem. Eng., vol. 7, no. 7, pp. 6458–6470, Apr. 2019, doi:10.1021/acssuschemeng.8b06550.

P. Luan, X. Zhao, K. Copenhaver, S. Ozcan, and H. Zhu, “Turning Natural Herbaceous Fibers into Advanced Materials for Sustainability,” Adv. Fiber Mater., vol. 4, no. 4, pp. 736–757, Aug. 2022, doi: 10.1007/s42765-022-00151-w.

R. Karthika, B. Jayanthi, A. Aruna, and T. Selvankumar, “Nanocellulosic Materials for Papermaking and Paper Coating Industry,” in Handbook of Nanocelluloses, Cham: Springer International Publishing, 2022, pp. 1–34.

W. Long, B. Fang, A. Ignaszak, Z. Wu, Y.-J. Wang, and D. Wilkinson, “Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries,” Chem. Soc. Rev., vol. 46, no. 23, pp. 7176–7190, 2017, doi: 10.1039/C6CS00639F.

A. Riley, “Paper and paperboard packaging,” in Packaging Technology, Elsevier, 2012, pp. 178–239.

M. S. T. Amândio, J. M. Pereira, J. M. S. Rocha, L. S. Serafim, and A. M. R. B. Xavier, “Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy,” Energies, vol. 15, no. 11, p. 4105, Jun. 2022, doi: 10.3390/en15114105.

N. Barrios, R. Marquez, J. D. McDonald, M. A. Hubbe, R. A. Venditti, and L. Pal, “Innovation in lignocellulosics dewatering and drying for energy sustainability and enhanced utilization of forestry, agriculture, and marine resources - A review,” Adv. Colloid Interface Sci., vol. 318, p. 102936, Aug. 2023, doi: 10.1016/j.cis.2023.102936.

M. Kacprzak et al., Eds., Biodegradable Waste Management in the Circular Economy. Wiley, 2022.

D. T. Nguyen and H. C. Le, “Potential of jute fiber-reinforced composites in the manufacture of components and equipment used on ships and hulls,” J. Emerg. Sci. Eng., vol. 1, no. 1, pp. 14–21, Sep. 2023, doi: 10.61435/jese.2023.3.

Z. Arif, Husaini, N. Ali, and S. Mulyati, “Investigation of Mechanical Properties and Thermal Analysis of Bagasse Fiber Reinforced Composite Polymer Foam,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 4, pp. 1210–1216, 2023, doi: 10.18517/ijaseit.13.4.17910.

Anh Tuan Hoang, Minh Quang Chau, and Quang Binh Le, “Parameters Affecting Fiber Quality and Productivity of Coir Spinning Machines,” J. Mech. Eng. Res. Dev., vol. 43, no. 5, pp. 122–145, 2020.

Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, “Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review,” Front. Mater., vol. 6, Sep. 2019, doi: 10.3389/fmats.2019.00226.

C. Felgueiras, N. G. Azoia, C. Gonçalves, M. Gama, and F. Dourado, “Trends on the Cellulose-Based Textiles: Raw Materials and Technologies,” Front. Bioeng. Biotechnol., vol. 9, Mar. 2021, doi:10.3389/fbioe.2021.608826.

T. Li et al., “Developing fibrillated cellulose as a sustainable technological material,” Nature, vol. 590, no. 7844, pp. 47–56, Feb. 2021, doi: 10.1038/s41586-020-03167-7.

S. K. Ramamoorthy, M. Skrifvars, and A. Persson, “A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers,” Polym. Rev., vol. 55, no. 1, pp. 107–162, Jan. 2015, doi: 10.1080/15583724.2014.971124.

R. Gupta, A. Kushwaha, D. Dave, and N. R. Mahanta, “Waste management in fashion and textile industry: Recent advances and trends, life-cycle assessment, and circular economy,” in Emerging Trends to Approaching Zero Waste, Elsevier, 2022, pp. 215–242.

M. Ribul, A. Lanot, C. Tommencioni Pisapia, P. Purnell, S. J. McQueen-Mason, and S. Baurley, “Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles,” J. Clean. Prod., vol. 326, p. 129325, Dec. 2021, doi: 10.1016/j.jclepro.2021.129325.

K. Shirvanimoghaddam, B. Motamed, S. Ramakrishna, and M. Naebe, “Death by waste: Fashion and textile circular economy case,” Sci. Total Environ., vol. 718, p. 137317, May 2020, doi:10.1016/j.scitotenv.2020.137317.

K. Jayaprakash, A. Osama, R. Rajagopal, B. Goyette, and O. P. Karthikeyan, “Agriculture Waste Biomass Repurposed into Natural Fibers: A Circular Bioeconomy Perspective,” Bioengineering, vol. 9, no. 7, p. 296, Jul. 2022, doi: 10.3390/bioengineering9070296.

A. K. Mohanty, M. Misra, and L. T. Drzal, “Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World,” J. Polym. Environ., vol. 10, no. 1, pp. 19–26, 2002, doi: 10.1023/A:1021013921916.

R. Mori, “Replacing all petroleum-based chemical products with natural biomass-based chemical products: a tutorial review,” RSC Sustain., vol. 1, no. 2, pp. 179–212, 2023, doi: 10.1039/D2SU00014H.

A. K. Agarwal, J. G. Gupta, and A. Dhar, “Potential and challenges for large-scale application of biodiesel in automotive sector,” Prog. Energy Combust. Sci., vol. 61, pp. 113–149, Jul. 2017, doi:10.1016/j.pecs.2017.03.002.

L. A. H. Nogueira, G. M. Souza, L. A. B. Cortez, and C. H. de Brito Cruz, “Biofuels for Transport,” in Future Energy, Elsevier, 2020, pp. 173–197.

C. Panoutsou et al., “Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake,” Energy Strateg. Rev., vol. 34, p. 100633, Mar. 2021, doi: 10.1016/j.esr.2021.100633.

T. L. Richard, “Challenges in Scaling Up Biofuels Infrastructure,” Science (80-. )., vol. 329, no. 5993, pp. 793–796, Aug. 2010, doi:10.1126/science.1189139.

V. Naik, M. Kumar, and V. Kaup, “A Review on Natural Fiber Composite Material in Automotive Applications,” Eng. Sci., 2021, doi:10.30919/es8d589.

S. Maiti, M. R. Islam, M. A. Uddin, S. Afroj, S. J. Eichhorn, and N. Karim, “Sustainable Fiber‐Reinforced Composites: A Review,” Adv. Sustain. Syst., vol. 6, no. 11, Nov. 2022, doi: 10.1002/adsu.202200258.

P. Schröder et al., “Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands,” Sci. Total Environ., vol. 616–617, pp. 1101–1123, Mar. 2018, doi: 10.1016/j.scitotenv.2017.10.209.

N. Scarlat, J.-F. Dallemand, F. Monforti-Ferrario, and V. Nita, “The role of biomass and bioenergy in a future bioeconomy: Policies and facts,” Environ. Dev., vol. 15, pp. 3–34, Jul. 2015, doi:10.1016/j.envdev.2015.03.006.

F. Rosalina and I. Febriadi, “A Novel Ameliorant Biochar of Areca Nuts Skin and Sago Bark Waste for Increasing Soil Chemical Fertility,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 3, pp. 1184–1189, 2023, doi: 10.18517/ijaseit.13.3.18315.

N. Cass, G. Walker, and P. Devine-Wright, “Good Neighbours, Public Relations and Bribes: The Politics and Perceptions of Community Benefit Provision in Renewable Energy Development in the UK,” J. Environ. Policy Plan., vol. 12, no. 3, pp. 255–275, Sep. 2010, doi:10.1080/1523908X.2010.509558.

M. P. Maniscalco, M. Volpe, and A. Messineo, “Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review,” Energies, vol. 13, no. 16, p. 4098, Aug. 2020, doi: 10.3390/en13164098.

A. T. Hoang and M. Q. Chau, “A mini review of using oleophilic skimmers for oil spill recovery,” J. Mech. Eng. Res. Dev., vol. 41, no. 2, pp. 92–96, 2018.

A. T. Hoang et al., “An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup,” Pet. Sci. Technol., vol. 36, no. 5, pp. 361–370, 2018, doi:10.1080/10916466.2018.1425722.

A. P. Onyena and K. Sam, “A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria,” Glob. Ecol. Conserv., vol. 22, p. e00961, 2020.

D. Ouyang, X. Lei, and H. Zheng, “Recent Advances in Biomass-Based Materials for Oil Spill Cleanup,” Nanomaterials, vol. 13, no. 3, p. 620, 2023.

H. H. Phan, A. T. Hoang, H. C. Nguyen, Q. D. Le, X. P. Nguyen, and X. D. Pham, “The efficient lignocellulose-based sorbent for oil spill treatment from polyurethane and agricultural residue of Vietnam,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 3, pp. 312–319, 2018, doi: 10.1080/15567036.2017.1415397.

Y. Zhang, E. K. Sam, J. Liu, and X. Lv, “Biomass-Based/Derived Value-Added Porous Absorbents for Oil/Water Separation,” Waste and Biomass Valorization, pp. 1–22, 2023.

S. S. Banerjee, M. V Joshi, and R. V Jayaram, “Treatment of oil spill by sorption technique using fatty acid grafted sawdust,” Chemosphere, vol. 64, no. 6, pp. 1026–1031, 2006.

A. T. Hoang, X. L. Bui, and X. D. Pham, “A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 8, pp. 929–939, 2018.

T. Paulauskienė, I. Jucikė, N. Juščenko, and D. Baziukė, “The use of natural sorbents for spilled crude oil and diesel cleanup from the water surface,” Water, Air, Soil Pollut., vol. 225, pp. 1–12, 2014.

U. Udokpoh and C. Nnaji, “Reuse of Sawdust in Developing Countries in the Light of Sustainable Development Goals,” Recent Prog. Mater., vol. 5, no. 1, pp. 1–33, 2023.

M. L. Murray, S. M. Poulsen, and B. R. Murray, “Decontaminating terrestrial oil spills: A comparative assessment of dog fur, human hair, peat moss and polypropylene sorbents,” Environments, vol. 7, no. 7, p. 52, 2020.

M. Q. Chau, T. T. Truong, A. T. Hoang, and T. H. Le, “Oil spill cleanup by raw cellulose-based absorbents: a green and sustainable approach,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–14, 2021, doi: 10.1080/15567036.2021.1928798.

A. T. Hoang, X. P. Nguyen, X. Q. Duong, and T. T. Huynh, “Sorbent-based devices for the removal of spilled oil from water: a review,” Environ. Sci. Pollut. Res., vol. 28, no. 23, pp. 28876–28910, Jun. 2021, doi: 10.1007/s11356-021-13775-z.

A. M. P. Madhubashani et al., “Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review,” Environ. Pollut., vol. 288, p. 117676, Nov. 2021, doi:10.1016/j.envpol.2021.117676.

J. Anae et al., “Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives,” Sci. Total Environ., vol. 767, p. 144351, May 2021, doi: 10.1016/j.scitotenv.2020.144351.

M. Kasbaji et al., “Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation,” Environ. Pollut., vol. 335, p. 122349, Oct. 2023, doi: 10.1016/j.envpol.2023.122349.

H. Zhou et al., “Phosphorus pollution control using waste-based adsorbents: Material synthesis, modification, and sustainability,” Crit. Rev. Environ. Sci. Technol., vol. 52, no. 12, pp. 2023–2059, Jun. 2022, doi: 10.1080/10643389.2020.1866414.

E. C. Emenike et al., “Adsorption of crude oil from aqueous solution: A review,” J. Water Process Eng., vol. 50, p. 103330, Dec. 2022, doi:10.1016/j.jwpe.2022.103330.

D. Constantinescu-Aruxandei and F. Oancea, “Closing the Nutrient Loop—The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes,” Int. J. Environ. Res. Public Health, vol. 20, no. 3, p. 2096, Jan. 2023, doi: 10.3390/ijerph20032096.

M. Sharma et al., “Microorganisms-assisted degradation of Acid Orange 7 dye: a review,” Int. J. Environ. Sci. Technol., Feb. 2024, doi:10.1007/s13762-023-05438-y.

Kafayat Kehinde Lawal, Ike Kenneth Ekeleme, Chinemerem Martin Onuigbo, Victor Okezie Ikpeazu, and Smart Obumneme Obiekezie, “A review on the public health implications of heavy metals,” World J. Adv. Res. Rev., vol. 10, no. 3, pp. 255–265, Jun. 2021, doi:10.30574/wjarr.2021.10.3.0249.

H. Ali, E. Khan, and I. Ilahi, “Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation,” J. Chem., vol. 2019, 2019.

A. B. Pradana, L. Buchori, W. D. Pratama, W. Z. Pratiwi, and Hadiyanto, “Immobilized algae for heavy metals remediation in textile wastewater,” J. Emerg. Sci. Eng., vol. 1, no. 2, pp. 51–56, Dec. 2023, doi: 10.61435/jese.2023.10.

A. T. Hoang and X. D. Pham, “An investigation of remediation and recovery of oil spill and toxic heavy metal from maritime pollution by a new absorbent material,” J. Mar. Eng. Technol., vol. 20, no. 3, pp. 159–169, May 2021, doi: 10.1080/20464177.2018.1544401.

M. Radenković et al., “Waste biomass derived highly-porous carbon material for toxic metal removal: Optimisation, mechanisms and environmental implications,” Chemosphere, vol. 347, p. 140684, 2024.

B. Wang, J. Lan, C. Bo, B. Gong, and J. Ou, “Adsorption of heavy metal onto biomass-derived activated carbon,” RSC Adv., vol. 13, no. 7, pp. 4275–4302, 2023.

R. K. Gautam, A. Mudhoo, G. Lofrano, and M. C. Chattopadhyaya, “Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration,” J. Environ. Chem. Eng., vol. 2, no. 1, pp. 239–259, Mar. 2014, doi:10.1016/j.jece.2013.12.019.

H. M. Anawar and V. Strezov, “Synthesis of biosorbents from natural/agricultural biomass wastes and sustainable green technology for treatment of nanoparticle metals in municipal and industrial wastewater,” in Emerging and nanomaterial contaminants in wastewater, Elsevier, 2019, pp. 83–104.

K. Ali, M. U. Javaid, Z. Ali, and M. J. Zaghum, “Biomass-derived adsorbents for dye and heavy metal removal from wastewater,” Adsorpt. Sci. Technol., vol. 2021, pp. 1–14, 2021.

Z. Hashmi, A. S. Jatoi, S. Nadeem, A. Anjum, S. M. Imam, and H. Jangda, “Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: a review,” Biomass Convers. Biorefinery, vol. 14, no. 1, pp. 45–76, 2024.

K. Kumar et al., “Biomass waste-derived carbon materials for sustainable remediation of polluted environments: A comprehensive review,” Chemosphere, p. 140419, 2023.

R. Fahim, L. Cheng, and S. Mishra, “Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater,” Chemosphere, vol. 345, p. 140514, Dec. 2023, doi: 10.1016/j.chemosphere.2023.140514.

R. Sharma and P. Malaviya, “Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement,” Chemosphere, vol. 290, p. 133358, Mar. 2022, doi:10.1016/j.chemosphere.2021.133358.

M. A. Al Masud et al., “A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions,” Sci. Total Environ., vol. 904, p. 166813, Dec. 2023, doi:10.1016/j.scitotenv.2023.166813.

J. O. Gonçalves, C. M. Fruto, M. J. Barranco, M. L. S. Oliveira, and C. G. Ramos, “Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review,” Sustainability, vol. 14, no. 2, p. 993, Jan. 2022, doi: 10.3390/su14020993.

M. Waqas et al., “Development of biomass-derived biochar for agronomic and environmental remediation applications,” Biomass Convers. Biorefinery, vol. 11, no. 2, pp. 339–361, Apr. 2021, doi:10.1007/s13399-020-00936-2.

I. Anastopoulos et al., “Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water,” J. Mol. Liq., vol. 342, p. 117540, 2021.

K. Asemave, L. Thaddeus, and P. T. Tarhemba, “Lignocellulosic-based sorbents: a review,” Sustain. Chem., vol. 2, no. 2, pp. 271–285, 2021.

K. Jeet, V. Kumar, Anushree, and R. Devi, “Valorization of Agricultural Wastes: A Step Toward Adoption of Smart Green Materials with Additional Benefit of Circular Economy,” in Handbook of Biomass Valorization for Industrial Applications, Wiley, 2022, pp. 343–367.

M. Jayakumar et al., “Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications,” Chemosphere, vol. 345, p. 140515, Dec. 2023, doi:10.1016/j.chemosphere.2023.140515.

K. Kumar et al., “Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review,” Chemosphere, vol. 345, p. 140419, Dec. 2023, doi:10.1016/j.chemosphere.2023.140419.

A. Sharma, Anjana, H. Rana, and S. Goswami, “A Comprehensive Review on the Heavy Metal Removal for Water Remediation by the Application of Lignocellulosic Biomass-Derived Nanocellulose,” J. Polym. Environ., vol. 30, no. 1, pp. 1–18, Jan. 2022, doi:10.1007/s10924-021-02185-4.

R. Ahorsu, F. Medina, and M. Constantí, “Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review,” Energies, vol. 11, no. 12, p. 3366, 2018.

M. Foston and A. J. Ragauskas, “Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance,” Ind. Biotechnol., vol. 8, no. 4, pp. 191–208, Aug. 2012, doi: 10.1089/ind.2012.0015.

P. Tanger, J. L. Field, C. E. Jahn, M. W. DeFoort, and J. E. Leach, “Biomass for thermochemical conversion: targets and challenges,” Front. Plant Sci., vol. 4, 2013, doi: 10.3389/fpls.2013.00218.

J. Yan et al., “Characterizing Variability in Lignocellulosic Biomass: A Review,” ACS Sustain. Chem. Eng., vol. 8, no. 22, pp. 8059–8085, Jun. 2020, doi: 10.1021/acssuschemeng.9b06263.

J. Daniell, M. Köpke, and S. Simpson, “Commercial Biomass Syngas Fermentation,” Energies, vol. 5, no. 12, pp. 5372–5417, Dec. 2012, doi: 10.3390/en5125372.

C. Bramsiepe et al., “Low-cost small scale processing technologies for production applications in various environments—Mass produced factories,” Chem. Eng. Process. Process Intensif., vol. 51, pp. 32–52, Jan. 2012, doi: 10.1016/j.cep.2011.08.005.

A. Faaij, “Modern Biomass Conversion Technologies,” Mitig. Adapt. Strateg. Glob. Chang., vol. 11, no. 2, pp. 343–375, Mar. 2006, doi:10.1007/s11027-005-9004-7.

P. Adams, T. Bridgwater, A. Lea-Langton, A. Ross, and I. Watson, “Biomass Conversion Technologies,” in Greenhouse Gases Balances of Bioenergy Systems, Elsevier, 2018, pp. 107–139.

S. Yılmaz and H. Selim, “A review on the methods for biomass to energy conversion systems design,” Renew. Sustain. Energy Rev., vol. 25, pp. 420–430, Sep. 2013, doi: 10.1016/j.rser.2013.05.015.

J. Kudakasseril Kurian, G. Raveendran Nair, A. Hussain, and G. S. Vijaya Raghavan, “Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review,” Renewable and Sustainable Energy Reviews. 2013, doi:10.1016/j.rser.2013.04.019.

L. Martinez-Valencia, D. Camenzind, M. Wigmosta, M. Garcia-Perez, and M. Wolcott, “Biomass supply chain equipment for renewable fuels production: A review,” Biomass and Bioenergy, vol. 148, p. 106054, May 2021, doi: 10.1016/j.biombioe.2021.106054.

W. Dessie et al., “Current advances on waste biomass transformation into value-added products,” Appl. Microbiol. Biotechnol., vol. 104, no. 11, pp. 4757–4770, Jun. 2020, doi: 10.1007/s00253-020-10567-2.

G. Dragone, A. A. J. Kerssemakers, J. L. S. P. Driessen, C. K. Yamakawa, L. P. Brumano, and S. I. Mussatto, “Innovation and strategic orientations for the development of advanced biorefineries,” Bioresour. Technol., vol. 302, no. December 2019, p. 122847, 2020, doi: 10.1016/j.biortech.2020.122847.

N. Skillen et al., “Photocatalytic Reforming of Biomass: What Role Will the Technology Play in Future Energy Systems,” Top. Curr. Chem., vol. 380, no. 5, p. 33, Oct. 2022, doi: 10.1007/s41061-022-00391-9.

F. A. Malla, S. A. Bandh, S. A. Wani, A. T. Hoang, and N. A. Sofi, “Biofuels: Potential Alternatives to Fossil Fuels,” in Biofuels in Circular Economy, Singapore: Springer Nature Singapore, 2022, pp. 1–15.

A. T. Hoang and O. Konur, “Microwave Pretreatment of the Biomass,” in Bioethanol Fuel Production Processes. I, CRC Press, 2023, p. 18.

V. Duc Bui et al., “Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy,” Sustain. Energy Technol. Assessments, vol. 55, p. 102991, Feb. 2023, doi: 10.1016/j.seta.2022.102991.

J. Schmidt, S. Leduc, E. Dotzauer, and E. Schmid, “Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria,” Energy Policy, vol. 39, no. 6, pp. 3261–3280, Jun. 2011, doi:10.1016/j.enpol.2011.03.018.

S. Prasad, V. Venkatramanan, and A. Singh, “Renewable Energy for a Low-Carbon Future: Policy Perspectives,” in Sustainable Bioeconomy, Singapore: Springer Singapore, 2021, pp. 267–284.

S. K. Das, G. K. Ghosh, and R. Avasthe, “Valorizing biomass to engineered biochar and its impact on soil, plant, water, and microbial dynamics: a review,” Biomass Convers. Biorefinery, vol. 12, no. 9, pp. 4183–4199, Sep. 2022, doi: 10.1007/s13399-020-00836-5.

Y. Rouphael and G. Colla, “Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical Applications,” Agronomy, vol. 10, no. 10, p. 1461, Sep. 2020, doi:10.3390/agronomy10101461.

A. AbdulRafiu, “Policy seduction and governance resistance? Examining public funding agencies and academic institutions on decarbonisation research,” Sci. Public Policy, vol. 50, no. 1, pp. 87–101, Feb. 2023, doi: 10.1093/scipol/scac051.

D. Pant et al., “Towards the development of a biobased economy in Europe and India,” Crit. Rev. Biotechnol., vol. 39, no. 6, pp. 779–799, Aug. 2019, doi: 10.1080/07388551.2019.1618787.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).