Identification of Alzheimer’s Disease Using Novel Dual Decomposition Technique and Machine Learning Algorithms from EEG Signals
How to cite (IJASEIT) :
A. Atri, “The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management,” Medical Clinics of North America, vol. 103, no. 2. W.B. Saunders, pp. 263-293, Mar. 01, 2019. doi: 10.1016/j.mcna.2018.10.009.
“2020 Alzheimer’s disease facts and figures,” Alzheimer’s and Dementia, vol. 16, no. 3, pp. 391-460, Mar. 2020, doi: 10.1002/alz.12068.
S. J. Ruiz-Gómez et al., “Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment,” Entropy, vol. 20, no. 1, Jan. 2018, doi: 10.3390/e20010035.
K. Oppedal, K. Engan, T. Eftestí¸l, M. Beyer, and D. Aarsland, “Classifying Alzheimer’s disease, Lewy body dementia, and normal controls using 3D texture analysis in magnetic resonance images,” Biomed Signal Process Control, vol. 33, pp. 19-29, Mar. 2017, doi: 10.1016/j.bspc.2016.10.007.
X. Bi and H. Wang, “Early Alzheimer’s disease diagnosis based on EEG spectral images using deep learning,” Neural Networks, vol. 114, pp. 119-135, Jun. 2019, doi: 10.1016/j.neunet.2019.02.005.
E. E. Tí¼lay, B. Gí¼ntekin, G. Yener, A. Bayram, C. BaÅŸar-EroÄŸlu, and T. Demiralp, “Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s Disease,” International Journal of Psychophysiology, vol. 155, pp. 41-48, Sep. 2020, doi: 10.1016/j.ijpsycho.2020.06.001.
G. Fiscon et al., “Combining EEG signal processing with supervised methods for Alzheimer’s patients classification,” BMC Med Inform Decis Mak, vol. 18, no. 1, May 2018, doi: 10.1186/s12911-018-0613-y.
A. Khosla, P. Khandnor, and T. Chand, “A comparative analysis of signal processing and classification methods for different applications based on EEG signals,” Biocybernetics and Biomedical Engineering, vol. 40, no. 2. Elsevier Sp. z o.o., pp. 649-690, Apr. 01, 2020. doi: 10.1016/j.bbe.2020.02.002.
S. Siuly et al., “A New Framework for Automatic Detection of Patients with Mild Cognitive Impairment Using Resting-State EEG Signals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 9, pp. 1966-1976, Sep. 2020, doi: 10.1109/TNSRE.2020.3013429.
S. Simons, P. Espino, and D. Abí¡solo, “Fuzzy Entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: Is the method superior to Sample Entropy?,” Entropy, vol. 20, no. 1, Jan. 2018, doi: 10.3390/e20010021.
Y. Ding et al., “Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals,” Quant Imaging Med Surg, vol. 12, no. 2, pp. 1063-1078, Feb. 2022, doi: 10.21037/qims-21-430.
P. M. Rodrigues, B. C. Bispo, C. Garrett, D. Alves, J. P. Teixeira, and D. Freitas, “Lacsogram: A New EEG Tool to Diagnose Alzheimer’s Disease,” IEEE J Biomed Health Inform, vol. 25, no. 9, pp. 3384-3395, Sep. 2021, doi: 10.1109/JBHI.2021.3069789.
M. Cejnek, O. Vysata, M. Valis, and I. Bukovsky, “Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG,” Med Biol Eng Comput, vol. 59, no. 11-12, pp. 2287-2296, Nov. 2021, doi: 10.1007/s11517-021-02427-6.
J. P. Amezquita-Sanchez, N. Mammone, F. C. Morabito, S. Marino, and H. Adeli, “A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals,” J Neurosci Methods, vol. 322, pp. 88-95, Jul. 2019, doi: 10.1016/j.jneumeth.2019.04.013.
M. S. Safi and S. M. M. Safi, “Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters,” Biomed Signal Process Control, vol. 65, Mar. 2021, doi: 10.1016/j.bspc.2020.102338.
J. E. Santos Toural, A. Montoya Pedrón, and E. J. Marañón Reyes, “Classification among healthy, mild cognitive impairment and Alzheimer’s disease subjects based on wavelet entropy and relative beta and theta power,” Pattern Analysis and Applications, vol. 24, no. 2, pp. 413-422, May 2021, doi: 10.1007/s10044-020-00910-8.
V. Bajaj, S. Taran, S. K. Khare, and A. Sengur, “Feature extraction method for classification of alertness and drowsiness states EEG signals,” Applied Acoustics, vol. 163, Jun. 2020, doi: 10.1016/j.apacoust.2020.107224.
D. Puri, S. Nalbalwar, A. Nandgaonkar, P. Kachare, J. Rajput, and A. Wagh, “Alzheimer’s Disease Detection using Empirical Mode Decomposition and Hjorth parameters of EEG signal,” in 2022 International Conference on Decision Aid Sciences and Applications, DASA 2022, 2022, pp. 23-28. doi: 10.1109/DASA54658.2022.9765111.
Y. Miao, M. Zhao, and J. Lin, “Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition,” ISA Trans, vol. 84, pp. 82-95, Jan. 2019, doi: 10.1016/j.isatra.2018.10.008.
N. Ji, L. Ma, H. Dong, and X. Zhang, “EEG signals feature extraction based on DWT and EMD combined with approximate entropy,” Brain Sci, vol. 9, no. 8, Aug. 2019, doi: 10.3390/brainsci9080201.
Z. Huo, Y. Zhang, L. Shu, and M. Gallimore, “A New Bearing Fault Diagnosis Method Based on Fine-to-Coarse Multiscale Permutation Entropy, Laplacian Score and SVM,” IEEE Access, vol. 7, pp. 17050-17066, 2019, doi: 10.1109/ACCESS.2019.2893497.
S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing different supervised machine learning algorithms for disease prediction,” BMC Med Inform Decis Mak, vol. 19, no. 1, Dec. 2019, doi: 10.1186/s12911-019-1004-8.
J. Panyavaraporn and P. Horkaew, “Classification of Alzheimer’s Disease in PET Scans using MFCC and SVM,” vol. 8, no. 5, 2018.
Z. Wang, J. Na, and B. Zheng, “An Improved kNN Classifier for Epilepsy Diagnosis,” IEEE Access, vol. 8, pp. 100022-100030, 2020, doi: 10.1109/ACCESS.2020.2996946.
J. Rabcan, V. Levashenko, E. Zaitseva, and M. Kvassay, “Review of methods for EEG signal classification and development of new fuzzy classification-based approach,” IEEE Access, vol. 8. Institute of Electrical and Electronics Engineers Inc., pp. 189720-189734, 2020. doi: 10.1109/ACCESS.2020.3031447.
H. Sujaini, “Image Classification of Tourist Attractions with K-Nearest Neighbor, Logistic Regression, Random Forest, and Support Vector Machine,” vol. 10, no. 6, 2020.
D. Wang et al., “Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls,” Renewable and Sustainable Energy Reviews, vol. 124. Elsevier Ltd, May 01, 2020. doi: 10.1016/j.rser.2020.109772.
D. Puri, S. Nalbalwar, A. Nandgaonkar, and A. Wagh, “Alzheimer’s disease detection with Optimal EEG channel selection using Wavelet Transform,” in 2022 International Conference on Decision Aid Sciences and Applications, DASA 2022, 2022, pp. 443-448. doi: 10.1109/DASA54658.2022.9765166.
B. Oltu, M. F. AkÅŸahin, and S. KibaroÄŸlu, “A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection,” Biomed Signal Process Control, vol. 63, Jan. 2021, doi: 10.1016/j.bspc.2020.102223.
C. Ieracitano, N. Mammone, A. Hussain, and F. C. Morabito, “A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia,” Neural Networks, vol. 123, pp. 176-190, Mar. 2020, doi: 10.1016/j.neunet.2019.12.006.
D. Puri, S. Nalbalwar, A. Nandgaonkar, and A. Wagh, “Alzheimer’s disease detection from optimal electroencephalogram channels and tunable Q-wavelet transform,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 3, pp. 1420-1428, Mar. 2022, doi: 10.11591/ijeecs.v25.i3.pp1420-1428.
N. Sharma, M. H. Kolekar, and K. Jha, “Iterative Filtering Decomposition Based Early Dementia Diagnosis Using EEG with Cognitive Tests,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 9, pp. 1890-1898, Sep. 2020, doi: 10.1109/TNSRE.2020.3007860.
P. Durongbhan et al., “A dementia classification framework using frequency and time-frequency features based on EEG signals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 5, pp. 826-835, May 2019, doi: 10.1109/TNSRE.2019.2909100.
K. D. Tzimourta et al., “EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions,” Brain Sci, vol. 9, no. 4, Apr. 2019, doi: 10.3390/brainsci9040081.
A. M. Pineda, F. M. Ramos, L. E. Betting, and A. S. L. O. Campanharo, “Quantile graphs for EEG-based diagnosis of Alzheimer’s disease,” PLoS One, vol. 15, no. 6, Jun. 2020, doi: 10.1371/journal.pone.0231169.
L. Tyloví¡, J. Kukal, V. Hubata-Vacek, and O. VyÅ¡ata, “Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification,” Biomed Signal Process Control, vol. 39, pp. 424-430, Jan. 2018, doi: 10.1016/j.bspc.2017.08.012.
D. Puri, R. Chudiwal, and P. Kachare, Detection of Epilepsy using Wavelet Packet Sub-bands from EEG Signals, vol. 303 SIST. 2022. doi: 10.1007/978-981-19-2719-5_28.
J. S. Rajput, M. Sharma, R. S. Tan, and U. R. Acharya, “Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank,” Comput Biol Med, vol. 123, Aug. 2020, doi: 10.1016/j.compbiomed.2020.103924.
M. Zhu, A. HajiHosseini, T. R. Baumeister, S. Garg, S. Appel-Cresswell, and M. J. McKeown, “Altered EEG alpha and theta oscillations characterize apathy in Parkinson’s disease during incentivized movement,” Neuroimage Clin, vol. 23, Jan. 2019, doi: 10.1016/j.nicl.2019.101922.
D. Puri, R. Ingle, P. Kachare, M. Patil, and R. Awale, “Wavelet Packet Sub-band Based Classification of Alcoholic and Controlled State EEG Signals,” Proceedings of the International Conference on Communication and Signal Processing, Atlantis Press, pp. 562-567, 2017. doi: 10.2991/iccasp-16.2017.82.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).