Sustainable Biorefinery: Effect of Time Fermentation on Hidrolisis Product from Cocoa Pod Husk
How to cite (IJASEIT) :
C. P. M. Sianipar, “Environmentally-appropriate technology under lack of resources and knowledge: Solar-powered cocoa dryer in rural Nias, Indonesia,” Clean. Eng. Technol., vol. 8, no. March, p. 100494, 2022, doi: 10.1016/j.clet.2022.100494.
A. Tothmihaly, V. Ingram, and S. von Cramon-Taubadel, “How Can the Environmental Efficiency of Indonesian Cocoa Farms Be Increased?,” Ecol. Econ., vol. 158, pp. 134–145, 2019, doi:10.1016/j.ecolecon.2019.01.004.
E. O. Adeleke, B. O. Omafuvbe, I. O. Adewale, and M. K. Bakare, “Purification and characterisation of a cellulase obtained from cocoa (theobroma cacao) pod-degrading bacillus coagulans co4,” Turkish J. Biochem., vol. 37, no. 3, pp. 222–230, 2012, doi:10.5505/tjb.2012.47955.
D. Bedana, M. Kamruzzaman, M. J. Rana, B. A. A. Mustafi, and R. K. Talukder, “Financial and functionality analysis of a biogas plant in Bangladesh,” Heliyon, vol. 8, no. 9, pp. 1–9, 2022, doi:10.1016/j.heliyon.2022.e10727.
P. S. Awodi, J. C. Ogbonna, and T. N. Nwagu, “Bioconversion of mango (Mangifera indica) seed kernel starch into bioethanol using various fermentation techniques,” Heliyon, vol. 8, no. 6, p. e09707, 2022, doi: 10.1016/j.heliyon.2022.e09707.
K. Kley Valladares-Diestra, L. Porto de Souza Vandenberghe, and C. Ricardo Soccol, “A biorefinery approach for pectin extraction and second-generation bioethanol production from cocoa pod husk,” Bioresour. Technol., vol. 346, p. 126635, 2022, doi:10.1016/j.biortech.2021.126635.
A. Naresh Kumar et al., “Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy,” Sci. Total Environ., vol. 806, no. Part 1, p. 150312, 2022, doi:10.1016/j.scitotenv.2021.150312.
Y. Wu, J. Wu, Q. Shen, X. Zheng, and Y. Chen, “Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity,” Water Res., vol. 197, p. 117081, 2021, doi: 10.1016/j.watres.2021.117081.
K. Chandrasekhar, A. Naresh Kumar, G. Kumar, D. H. Kim, Y. C. Song, and S. H. Kim, “Electro-fermentation for biofuels and biochemicals production: Current status and future directions,” Bioresour. Technol., vol. 323, no. March, p. 124598, 2021, doi:10.1016/j.biortech.2020.124598.
S. Chatterjee and S. Venkata Mohan, “Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization and fermentation optimization,” Bioresour. Technol., vol. 340, p. 125650, 2021, doi: 10.1016/j.biortech.2021.125650.
M. Deshmukh, A. Pande, and A. Marathe, “Different particle size study of castor deoiled cake for biofuel production with an environmental sustainability perspective,” Heliyon, vol. 8, no. 6, p. e09710, 2022, doi: 10.1016/j.heliyon.2022.e09710.
Z. Hamden, Y. El-Ghoul, F. M. Alminderej, S. M. Saleh, and H. Majdoub, “High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency,” Antioxidants, vol. 11, no. 6, pp. 1–19, 2022, doi: 10.3390/antiox11061155.
E. Derman, R. Abdulla, H. Marbawi, M. K. Sabullah, J. A. Gansau, and P. Ravindra, “Simultaneous Saccharification and Fermentation of Empty Fruit Bunches of Palm for Bioethanol Production Using a Microbial Consortium of S. cerevisiae and T. harzianum,” Fermentation, vol. 8, no. 7, pp. 1–27, 2022, doi:10.3390/fermentation8070295.
A. B. Castillo, D. J. D. Cortes, C. F. Sorino, C. K. P. Soriño, M. H. El-Naas, and T. Ahmed, “Bioethanol Production from Waste and Nonsalable Date Palm (Phoenix dactylifera L.) Fruits: Potentials and Challenges,” Sustainability, vol. 15, no. 4, p. 2937, Feb. 2023, doi:10.3390/su15042937.
S. Soeprijanto, A. Hamzah, N. F. Anindya, and P. S. Mudyawati, “Bioethanol Production from Wastewater of Brown Sugar Home Industry in Kediri via Enzymatic Hydrolysis and Fermentation,” IPTEK J. Eng., vol. 7, no. 2, pp. 78–82, 2021, doi:10.12962/j23378557.v7i2.a10528.
M. D. Coney, D. C. Morris, A. Gilbert, S. W. Prescott, R. S. Haines, and J. B. Harper, “Effects of Ionic Liquids on the Nucleofugality of Chloride,” J. Org. Chem., vol. 87, no. 3, pp. 1767–1779, 2022, doi:10.1021/acs.joc.1c02043.
M. L. Lopes et al., “Ethanol production in Brazil: a bridge between science and industry,” Brazilian J. Microbiol., vol. 47, pp. 64–76, 2016, doi: 10.1016/j.bjm.2016.10.003.
A. P. Jacobus, J. Gross, J. H. Evans, S. R. Ceccato-Antonini, and A. K. Gombert, “Saccharomyces cerevisiae strains used industrially for bioethanol production,” Essays Biochem., vol. 65, no. 2, pp. 147–161, 2021, doi:10.1042/EBC20200160.
X. Han, Y. Chen, and X. Wang, “Impacts of China’s bioethanol policy on the global maize market: a partial equilibrium analysis to 2030,” Food Secur., vol. 14, no. 1, pp. 147–163, Feb. 2022, doi:10.1007/s12571-021-01212-5.
A. Ahmad et al., “Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain,” Food Sci. Nutr., vol. 9, pp. 2066– 2074, 2021, doi: 10.1002/fsn3.2175.
B. Behera, M. Selvam S, and B. Paramasivan, “Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives,” Bioresour. Technol., vol. 351, no. 127038, p. 127038, May 2022, doi:10.1016/j.biortech.2022.127038.
A. V. Shah, A. Singh, S. Sabyasachi Mohanty, V. Kumar Srivastava, and S. Varjani, “Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy,” Bioresour. Technol., vol. 349, p. 126835, 2022, doi:10.1016/j.biortech.2022.126835.
H. Y. Leong et al., “Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues,” Biotechnol. Biofuels, vol. 14, no. 87, 2021, doi:10.1186/s13068-021-01939-5.
M. Francavilla, M. Marone, P. Marasco, F. Contillo, and M. Monteleone, “Artichoke biorefinery: From food to advanced technological applications,” Foods, vol. 10, no. 1, p. 112, 2021, doi:10.3390/foods10010112.
M. del M. Contreras, A. Lama-Muñoz, J. Manuel Gutiérrez-Pérez, F. Espínola, M. Moya, and E. Castro, “Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status,” Bioresour. Technol., vol. 280, pp. 459–477, 2019, doi:10.1016/j.biortech.2019.02.040.
A. E. Atabani et al., “A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery,” Chemosphere, vol. 286, no. 2, p. 131730, 2022, doi:10.1016/j.chemosphere.2021.131730.
F. Battista, L. Zuliani, F. Rizzioli, S. Fusco, and D. Bolzonella, “Biodiesel, biogas and fermentable sugars production from Spent coffee Grounds: A cascade biorefinery approach,” Bioresour. Technol., vol. 342, p. 125952, 2021, doi:10.1016/j.biortech.2021.125952.
Y. Gao, M. Z. Ozel, T. Dugmore, A. Sulaeman, and A. S. Matharu, “A biorefinery strategy for spent industrial ginger waste,” J. Hazard. Mater., vol. 401, p. 123400, 2021, doi:10.1016/j.jhazmat.2020.123400.
A. Chaudhary et al., “Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production,” Saudi J. Biol. Sci., vol. 28, no. 9, pp. 4867–4875, 2021, doi:10.1016/j.sjbs.2021.06.081.
A. Chaudhary et al., “Punica granatum waste to ethanol valorisation employing optimized levels of saccharification and fermentation,” Saudi J. Biol. Sci., vol. 28, no. 7, pp. 3710–3719, 2021, doi:10.1016/j.sjbs.2021.04.049.
M. W. Seo et al., “Recent advances of thermochemical conversieon processes for biorefinery,” Bioresour. Technol., vol. 343, p. 126109, 2022, doi:10.1016/j.biortech.2021.126109.
V. B. Shet et al., “Acid hydrolysis optimization of cocoa pod shell using response surface methodology approach toward ethanol production,” Agric. Nat. Resour., vol. 52, no. 6, pp. 581–587, 2018, doi:10.1016/j.anres.2018.11.022.
T. J. Tse, D. J. Wiens, and M. J. T. Reaney, “Production of Bioethanol—A Review of Factors Affecting Ethanol Yield,” Fermentation, vol. 7, no. 4, p. 268, Nov. 2021, doi:10.3390/fermentation7040268.
P. V. Attfield, “Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass,” Crit. Rev. Biotechnol., vol. 43, no. 6, pp. 920–937, Aug. 2023, doi:10.1080/07388551.2022.2072268.
R. Moscoviz, R. Kleerebezem, and J. L. Rombouts, “Directing carbohydrates toward ethanol using mesophilic microbial communities,” Curr. Opin. Biotechnol., vol. 67, no. February, pp. 175–183, 2021, doi:10.1016/j.copbio.2021.01.016.
A. Shrivastava, M. Pal, and R. K. Sharma, “Simultaneous Production of Bioethanol and Bioelectricity in a Membrane-Less Single-Chambered Yeast Fuel Cell by Saccharomyces cerevisiae and Pichia fermentans,” Arab. J. Sci. Eng., vol. 47, no. 6, pp. 6763–6771, 2022, doi:10.1007/s13369-021-06248-5.
G. Y. Ramírez-Cota, E. O. López-Villegas, A. R. Jiménez-Aparicio, and H. Hernández-Sánchez, “Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its Possible Use in a Functional Beer,” Probiotics Antimicrob. Proteins, vol. 13, no. 1, pp. 187–194, 2021, doi:10.1007/s12602-020-09680-5.
K. Malik et al., “Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation,” Ind. Crops Prod., vol. 159, no. January, p. 113122, 2021, doi:10.1016/j.indcrop.2020.113122.
F. Y. Bai, D. Y. Han, S. F. Duan, and Q. M. Wang, “The Ecology and Evolution of the Baker’s Yeast Saccharomyces cerevisiae,” Genes (Basel)., vol. 13, no. 2, p. 230, 2022, doi: 10.3390/genes13020230.
C. Xu et al., “Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction,” Bioresour. Technol., vol. 339, no. November, p. 125578, 2021, doi:10.1016/j.biortech.2021.125578.
Z. A. S. Bahlawan et al., “Immobilization of Saccharomyces cerevisiae in Jackfruit (Artocarpus heterophyllus) Seed Fiber for Bioethanol Production,” ASEAN J. Chem. Eng., vol. 22, no. 1, pp. 156–167, 2022, doi:10.22146/ajche.69781.
A. N. David, Y. Sewsynker-Sukai, B. Sithole, and E. B. Gueguim Kana, “Development of a green liquor dregs pretreatment for enhanced glucose recovery from corn cobs and kinetic assessment on various bioethanol fermentation types,” Fuel, vol. 274, p. 117797, 2020, doi:10.1016/j.fuel.2020.117797.
V. Radonicic, C. Yvanoff, M. I. Villalba, S. Kasas, and R. G. Willaert, “The Dynamics of Single-Cell Nanomotion Behaviour of Saccharomyces cerevisiae in a Microfluidic Chip for Rapid Antifungal Susceptibility Testing,” Fermentation, vol. 8, no. 5, p. 195, Apr. 2022, doi:10.3390/fermentation8050195.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).