Monitoring and Controlling System of Smart Mini Greenhouse Based on Internet of Things (IoT) for Spinach Plant (Amaranthus sp.)

Renny Eka Putri (1), Novia Utama Lestari (2), Ifmalinda (3), Feri Arlius (4), Irriwat Putri (5), Ashadi Hasan (6)
(1) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
(2) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
(3) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
(4) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
(5) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
(6) Department of Agriculture Engineering and Biosystem, Andalas University, Padang, 25163, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Putri, Renny Eka, et al. “Monitoring and Controlling System of Smart Mini Greenhouse Based on Internet of Things (IoT) for Spinach Plant (Amaranthus sp.)”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 131-6, doi:10.18517/ijaseit.14.1.18408.
Greenhouses, often composed of plastic or glass structures, play a fundamental role in optimizing the environmental conditions essential for successful plant cultivation, ultimately resulting in higher-quality crop yields. The study aims to develop a real-time monitoring and control system for a smart mini greenhouse utilizing the Internet of Things (IoT), with a specific focus on cultivating spinach. The monitoring system is constructed around an ESP32 microcontroller, complemented by a DHT22 sensor for accurate air temperature and humidity measurements, and an RTC DS3231 timer for scheduling tasks. The DHT22 sensor's set point values trigger the fan and misting system operations. The fan activates when the air temperature reaches 32°C, while the misting system turns on when humidity levels (RH) reach 55%. The ESP32 is the central processing unit, enabling internet connectivity through Wi-Fi for real-time data monitoring via the Blynk application. Sensor calibration confirms the system's precision, with regression analyses producing impressive R2 values of 0.989 and 0.952. The shading net control system operates four hours daily, from 11:00 to 15:00 WIB (Western Indonesian Time), optimizing the greenhouse environment. This well-executed system leads to the robust growth of spinach plants, reaching a height of 23.02 cm, sprouting nine leaves, and attaining a weight of 10 grams. The findings from this study highlight the efficiency and effectiveness of the smart mini greenhouse's monitoring and control system, offering promising applications in broader greenhouse management and crop cultivation practices.

K. Koteish, H. Harb, M. Dbouk, C. Zaki, and C. Abou Jaoude, “AGRO: A smart sensing and decision-making mechanism for real-time agriculture monitoring,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 7059–7069, 2022, doi:10.1016/j.jksuci.2022.06.017.

L. Wang et al., “Smart Contract-Based Agricultural Food Supply Chain Traceability,” IEEE Access, vol. 9, pp. 9296–9307, 2021, doi:10.1109/access.2021.3050112.

R. B. Wakweya, “Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security,” J. Agric. Food Res., vol. 14, no. June, p. 100698, 2023, doi:10.1016/j.jafr.2023.100698.

A. Rettore de Araujo Zanella, E. da Silva, and L. C. Pessoa Albini, “Security challenges to smart agriculture: Current state, key issues, and future directions,” Array, vol. 8, no. October, p. 100048, 2020, doi:10.1016/j.array.2020.100048.

J. Xu, B. Gu, and G. Tian, “Review of agricultural IoT technology,” Artif. Intell. Agric., vol. 6, pp. 10–22, 2022, doi:10.1016/j.aiia.2022.01.001.

B. Tadesse and M. Ahmed, “Impact of adoption of climate smart agricultural practices to minimize production risk in Ethiopia: A systematic review,” J. Agric. Food Res., vol. 13, no. May, p. 100655, 2023, doi:10.1016/j.jafr.2023.100655.

G. Gebresenbet et al., “A concept for application of integrated digital technologies to enhance future smart agricultural systems,” Smart Agric. Technol., vol. 5, no. May, p. 100255, 2023, doi:10.1016/j.atech.2023.100255.

X. Yang et al., “A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges,” IEEE/CAA J. Autom. Sin., vol. 8, no. 2, pp. 273–302, 2021, doi:10.1109/JAS.2020.1003536.

S. Chaterji et al., “Lattice: A Vision for Machine Learning, Data Engineering, and Policy Considerations for Digital Agriculture at Scale,” IEEE Open J. Comput. Soc., vol. 2, no. May, pp. 227–240, 2021, doi: 10.1109/ojcs.2021.3085846.

F. A. Khan, A. A. Ibrahim, and A. M. Zeki, “Environmental monitoring and disease detection of plants in smart greenhouse using internet of things,” J. Phys. Commun., vol. 4, no. 5, 2020, doi:10.1088/2399-6528/ab90c1.

S. F. Ahmed et al., “Industrial Internet of Things enabled technologies, challenges, and future directions,” Comput. Electr. Eng., vol. 110, no. July, p. 108847, 2023, doi: 10.1016/j.compeleceng.2023.108847.

T. Daum, F. Baudron, R. Birner, M. Qaim, and I. Grass, “Addressing agricultural labour issues is key to biodiversity-smart farming,” Biol. Conserv., vol. 284, no. May, p. 110165, 2023, doi:10.1016/j.biocon.2023.110165.

S. J. Hsiao and W. T. Sung, “Building a fishfivegetable coexistence system based on a wireless sensor network,” IEEE Access, vol. 8, pp. 192119–192131, 2020, doi: 10.1109/access.2020.3032795.

A. Kavga, V. Thomopoulos, P. Barouchas, N. Stefanakis, and A. Liopa-Tsakalidi, “Research on innovative training on smart greenhouse technologies for economic and environmental sustainability,” Sustain., vol. 13, no. 19, pp. 1–22, 2021, doi:10.3390/su131910536.

J. Pak, J. Kim, Y. Park, and H. Il Son, “Field Evaluation of Path-Planning Algorithms for Autonomous Mobile Robot in Smart Farms,” IEEE Access, vol. 10, pp. 60253–60266, 2022, doi:10.1109/access.2022.3181131.

M. Faisal, M. Alsulaiman, M. Arafah, and M. A. Mekhtiche, “IHDS: Intelligent harvesting decision system for date fruit based on maturity stage using deep learning and computer vision,” IEEE Access, vol. 8, pp. 167985–167997, 2020, doi:10.1109/access.2020.3023894.

M. P. Tabe-Ojong, G. B. D. Aihounton, and J. C. Lokossou, “‘Climate-smart agriculture and food security: Cross-country evidence from West Africa,’” Glob. Environ. Chang., vol. 81, no. May, p. 102697, 2023, doi: 10.1016/j.gloenvcha.2023.102697.

A. Villa-Henriksen, G. T. C. Edwards, L. A. Pesonen, O. Green, and C. A. G. Sørensen, “Internet of Things in arable farming: Implementation, applications, challenges and potential,” Biosyst. Eng., vol. 191, pp. 60–84, 2020, doi:10.1016/j.biosystemseng.2019.12.013.

G. T. Getnet, A. B. Dagnew, and D. Y. Ayal, “Spatiotemporal variability and trends of rainfall and temperature in the tropical moist montane ecosystem: Implications to climate-smart agriculture in Geshy watershed, Southwest Ethiopia,” Clim. Serv., vol. 30, no. April, p. 100384, 2023, doi:10.1016/j.cliser.2023.100384.

R. V. Kolhe, P. William, P. M. Yawalkar, D. N. Paithankar, and A. R. Pabale, “Smart city implementation based on Internet of Things integrated with optimization technology,” Meas. Sensors, vol. 27, no. May, p. 100789, 2023, doi:10.1016/j.measen.2023.100789.

A. Pagano, D. Croce, I. Tinnirello, and G. Vitale, “A Survey on LoRa for Smart Agriculture: Current Trends and Future Perspectives,” IEEE Internet Things J., vol. 10, no. 4, pp. 3664–3679, 2023, doi:10.1109/jiot.2022.3230505.

W. Yang, W. Xiang, Y. Yang, and P. Cheng, “Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT,” IEEE Trans. Ind. Informatics, vol. 19, no. 2, pp. 1884–1893, 2023, doi:10.1109/tii.2022.3183465.

J. Li et al., “Triboelectric nanogenerators enabled internet of things: A survey,” Intell. Converg. Networks, vol. 1, no. 2, pp. 115–141, 2020, doi:10.23919/icn.2020.0008.

Y. Feng, H. Zhu, and Z. Dong, “Simultaneous and Global Optimizations of LNG Fueled Hybrid Electric Ship for Substantial Fuel Cost, CO2 and Methane Emission Reduction,” IEEE Trans. Transp. Electrif., vol. 9, no. 2, pp. 2282–2295, 2022, doi:10.1109/tte.2022.3208880.

S. J. Park et al., “Air Conditioning System Design to Reduce Condensation in an Underground Utility Tunnel Using CFD,” IEEE Access, vol. 10, no. October, pp. 116384–116401, 2022, doi:10.1109/access.2022.3219210.

S. D. Nath, M. S. Hossain, I. A. Chowdhury, S. Tasneem, M. Hasan, and R. Chakma, “Design and Implementation of an IoT Based Greenhouse Monitoring and Controlling System,” J. Comput. Sci. Technol. Stud., vol. 3, no. 1, pp. 01–06, 2021, doi:10.32996/jcsts.2021.3.1.1.

D. Alghazzawi, O. Bamasaq, S. Bhatia, A. Kumar, P. Dadheech, and A. Albeshri, “Congestion Control in Cognitive IoT-Based WSN Network for Smart Agriculture,” IEEE Access, vol. 9, pp. 151401–151420, 2021, doi:10.1109/access.2021.3124791.

N. Lei, “Intelligent logistics scheduling model and algorithm based on Internet of Things technology,” Alexandria Eng. J., vol. 61, no. 1, pp. 893–903, 2022, doi: 10.1016/j.aej.2021.04.075.

O. Gulec, E. Haytaoglu, and S. Tokat, “A Novel Distributed CDS Algorithm for Extending Lifetime of WSNs with Solar Energy Harvester Nodes for Smart Agriculture Applications,” IEEE Access, vol. 8, pp. 58859–58873, 2020, doi:10.1109/access.2020.2983112.

A. Celik, I. Romdhane, G. Kaddoum, and A. M. Eltawil, “A Top-Down Survey on Optical Wireless Communications for the Internet of Things,” IEEE Commun. Surv. Tutorials, vol. 25, no. 1, pp. 1–45, 2023, doi:10.1109/comst.2022.3220504.

R. O. Andrade, S. G. Yoo, L. Tello-Oquendo, and I. Ortiz-Garces, “A Comprehensive Study of the IoT Cybersecurity in Smart Cities,” IEEE Access, vol. 8, 2020, doi:10.1109/access.2020.3046442.

C. Breyer et al., “On the History and Future of 100% Renewable Energy Systems Research,” IEEE Access, vol. 10, no. June, pp. 78176–78218, 2022, doi:10.1109/access.2022.3193402.

V. Barral Vales, O. C. Fernandez, T. Dominguez-Bolano, C. J. Escudero, and J. A. Garcia-Naya, “Fine Time Measurement for the Internet of Things: A Practical Approach Using ESP32,” IEEE Internet Things J., vol. 9, no. 19, pp. 18305–18318, 2022, doi:10.1109/jiot.2022.3158701.

N. Choab, A. Allouhi, A. El Maakoul, T. Kousksou, S. Saadeddine, and A. Jamil, “Effect of Greenhouse Design Parameters on the Heating and Cooling Requirement of Greenhouses in Moroccan Climatic Conditions,” IEEE Access, vol. 9, pp. 2986–3003, 2021, doi:10.1109/access.2020.3047851.

S. A. Wagan, J. Koo, I. F. Siddiqui, M. Attique, D. R. Shin, and N. M. F. Qureshi, “Internet of medical things and trending converged technologies: A comprehensive review on real-time applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 9228–9251, 2022, doi: 10.1016/j.jksuci.2022.09.005.

T. Juwariyah, L. Krisnawati, and S. Sulasminingsih, “Design of IoT-Based Smart Bins Integrated Monitoring System Using Blynk,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, p. 012078, 2021, doi:10.1088/1757-899x/1125/1/012078.

R. E Putri, P. A. Oktavionry, F. Arlius, I. Putri, and A. Hasan. “Use of Tower System in Vertical Farming Technique”. IOP Conference Series: Earth and Environmental Science. vol. 1182, No. 1, p. 012005. IOP Publishing. 2023. doi:10.1088/1755-1315/1182/1/012005

R. E. Putri, W. Fauzia, and D. Cherie. “IoT-Based for Monitoring and Control System on Aeroponic Growth of Pakcoy (Brassica rapa L.)”. Jurnal Keteknikan Pertanian, vol 11(2), 222-239. 2023. doi:10.19028/jtep.011.2.222-239

R. E. Putri, W. Darmadi, D. Cherie, and A. T. Puari. “The Design of Automatic Soil pH Control System on Aloe vera Cultivation with an Integration of Internet of Things (IoT)”. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering). vol 12(3), 597-609. 2023. doi:10.23960/jtep-l.v12i3.597-609

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).