Application of Response Surface Method in Reverse Osmosis Membrane to Optimize BOD, COD and Colour Removal from Palm Oil Mill Effluent

Muhammad Said (1), Muneer M. Ba-Abbad (2), Siti Rozaimah Sheikh Abdullah (3), Abdul Wahab Mohammad (4)
(1) Department of Chemistry Sriwijaya University
(2) Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
(3) Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
(4) Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Fulltext View | Download
How to cite (IJASEIT) :
Said, Muhammad, et al. “Application of Response Surface Method in Reverse Osmosis Membrane to Optimize BOD, COD and Colour Removal from Palm Oil Mill Effluent”. International Journal on Advanced Science, Engineering and Information Technology, vol. 7, no. 5, Oct. 2017, pp. 1871-8, doi:10.18517/ijaseit.7.5.1844.
Palm oil mill effluent (POME) is typically non-biodegradable and has high concentration of organic matter that represented as COD, BOD and Colour values. The correlation of concentration and pH of POME, and Trans membrane pressure (TMP) of Reverse Osmosis (RO) membrane was optimized by response surface method using a second order polynomial model with central composite design (CCD) which is a part model of response surface method (RSM) in Design-Expert® software. The main limits that influenced the parameters removal i.e. concentration of POME, pH of solution and transmembrane pressure were empirically determined at laboratory level and successfully optimized using RSM. The best conditions were determined from 3D response surface and 2D contour graphs i.e. 10.05% of POME concentration at pH 3.0 and TMP 0.50 kPa to yield the last values of COD, BOD and Colour i.e. 24.1372 mg/L,  24.33 mg/L and 11.76 PtCo, respectively.  The results show that the response surface method effective to reduce the number of experiment.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).