Measurement Analysis of Non-Invasive Blood Glucose On Sensor Coplanar Waveguide Loaded Square Ring Resonator with Interdigital Coupling Capacitor
How to cite (IJASEIT) :
L. Tang, S. J. Chang, C. J. Chen, and J. T. Liu, “Non-invasive blood glucose monitoring technology: A review,” Sensors (Switzerland), vol. 20, no. 23, pp. 1-32, 2020, doi: 10.3390/s20236925.
B. K. Mekonnen, W. Yang, T. H. Hsieh, S. K. Liaw, and F. L. Yang, “Accurate prediction of glucose concentration and identification of major contributing features from hardly distinguishable near-infrared spectroscopy,” Biomed. Signal Process. Control, vol. 59, May 2020, doi: 10.1016/j.bspc.2020.101923.
A. S. Bolla and R. Priefer, “Blood glucose monitoring- an overview of current and future non-invasive devices,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 5, pp. 739-751, Sep. 2020, doi: 10.1016/j.dsx.2020.05.016.
A. Kandwal et al., “Surface Plasmonic Feature Microwave Sensor with Highly Confined Fields for Aqueous-Glucose and Blood-Glucose Measurements,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2020.3017038.
L. Malena, O. Fiser, P. R. Stauffer, T. Drizdal, J. Vrba, and D. Vrba, “Feasibility evaluation of metamaterial microwave sensors for non-invasive blood glucose monitoring,” Sensors, vol. 21, no. 20, Oct. 2021, doi: 10.3390/s21206871.
D. Oloumi, R. S. C. Winter, A. Kordzadeh, P. Boulanger, and K. Rambabu, “Microwave Imaging of Breast Tumor Using Time-Domain UWB Circular-SAR Technique,” IEEE Trans. Med. Imaging, vol. 39, no. 4, pp. 934-943, Apr. 2020, doi: 10.1109/TMI.2019.2937762.
M. K. Sharma et al., “Experimental Investigation of the Breast Phantom for Tumor Detection Using Ultra-Wide Band-MIMO Antenna Sensor (UMAS) Probe,” IEEE Sens. J., vol. 20, no. 12, pp. 6745-6752, Jun. 2020, doi: 10.1109/JSEN.2020.2977147.
X. Xiao, Q. Yu, Q. Li, H. Song, and T. Kikkawa, “Precise Non-invasive Estimation of Glucose Using UWB Microwave with Improved Neural Networks and Hybrid Optimization,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2020.3010680.
A. Haider, M. U. Rahman, M. Naghshvarianjahromi, and H. S. Kim, “Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging,” Sensors (Switzerland), vol. 20, no. 15. MDPI AG, pp. 1-10, Aug. 01, 2020. doi: 10.3390/s20154302.
M. C. Cebedio, L. A. Rabioglio, I. E. Gelosi, R. A. Ribas, A. J. Uriz, and J. C. Moreira, “Analysis and Design of a Microwave Coplanar Sensor for Non-Invasive Blood Glucose Measurements,” IEEE Sens. J., vol. 20, no. 18, pp. 10572-10581, Sep. 2020, doi: 10.1109/JSEN.2020.2993182.
A. E. Omer et al., “Non-Invasive Real-Time Monitoring of Glucose Level Using Novel Microwave Biosensor Based on Triple-Pole CSRR,” IEEE Trans. Biomed. Circuits Syst., 2020, doi: 10.1109/TBCAS.2020.3038589.
S. Mohammadi et al., “Gold Coplanar Waveguide Resonator Integrated with a Microfluidic Channel for Aqueous Dielectric Detection,” IEEE Sens. J., vol. 20, no. 17, pp. 9825-9833, Sep. 2020, doi: 10.1109/JSEN.2020.2991349.
S. Kiani, P. Rezaei, and M. Fakhr, “Dual-Frequency Microwave Resonant Sensor to Detect Non-invasive Glucose-Level Changes through the Fingertip,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2021.3052011.
L. Hajshahvaladi, H. Kaatuzian, and M. Danaie, “A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution,” Opt. Commun., vol. 502, no. August 2021, p. 127421, 2022, doi: 10.1016/j.optcom.2021.127421.
M. Baghelani, Z. Abbasi, M. Daneshmand, and P. E. Light, “Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators,” Sci. Rep., vol. 10, no. 1, pp. 1-15, 2020, doi: 10.1038/s41598-020-69547-1.
L. Su, J. Munoz-Enano, P. Velez, M. Gil-Barba, P. Casacuberta, and F. Martin, “Highly Sensitive Reflective-Mode Phase-Variation Permittivity Sensor Based on a Coplanar Waveguide Terminated with an Open Complementary Split Ring Resonator (OCSRR),” IEEE Access, vol. 9, pp. 27928-27944, 2021, doi: 10.1109/ACCESS.2021.3058575.
A. Kumar et al., “High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection,” Sensors (Switzerland), vol. 20, no. 14, pp. 1-17, Jul. 2020, doi: 10.3390/s20144024.
M. A. Zidane, A. Rouane, C. Hamouda, and H. Amar, “Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water,” Sensors Actuators, A Phys., vol. 321, Apr. 2021, doi: 10.1016/j.sna.2021.112601.
H. R. Sun et al., “Symmetric coplanar waveguide sensor loaded with interdigital capacitor for permittivity characterization,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 1, Jan. 2020, doi: 10.1002/mmce.22023.
K. Han, Y. Liu, X. Guo, Z. Jiang, N. Ye, and P. Wang, “Design, analysis and fabrication of the CPW resonator loaded by DGS and MEMS capacitors,” J. Micromechanics Microengineering, vol. 31, no. 6, Jun. 2021, doi: 10.1088/1361-6439/abf844.
K. Abdesselam et al., “A Non-Invasive Honey-Cell CSRR Glucose Sensor: Design Considerations and Modelling,” IRBM, 2022, doi: 10.1016/j.irbm.2022.04.002.
H. Wang, L. Yang, X. Zhang, and M. H. Ang, “Results in Physics Permittivity , loss factor and Cole-Cole model of acrylic materials for dielectric elastomers,” Results Phys., vol. 29, p. 104781, 2021, doi: 10.1016/j.rinp.2021.104781.
S. Holm, “Time domain characterization of the Cole-Cole dielectric model,” J. Electr. Bioimpedance, vol. 11, no. 1, pp. 101-105, Jan. 2020, doi: 10.2478/JOEB-2020-0015.
C. Cole, “Assessment of Finger Fat Pad Effect on CSRR-Based Sensor Scattering Parameters for Non-Invasive Blood Glucose,” 2023, doi: 10.3390/s23010473.
A. Gorst, K. Zavyalova, and A. Mironchev, “Non-invasive determination of glucose concentration using a near-field sensor,” Biosensors, vol. 11, no. 3, Mar. 2021, doi: 10.3390/bios11030062.
S. Costanzo, V. Cioffi, A. M. Qureshi, and A. Borgia, “Gel-like human mimicking phantoms: Realization procedure, dielectric characterization and experimental validations on microwave wearable body sensors,” Biosensors, vol. 11, no. 4, Apr. 2021, doi: 10.3390/bios11040111.
M. Hays, S. Wojcieszak, N. Nusrat, L. E. Secondo, and E. Topsakal, “Glucose-dependent dielectric Cole-Cole models of rat blood plasma from 500 MHz to 40 GHz for millimeter-wave glucose detection,” Microw. Opt. Technol. Lett., vol. 62, no. 9, pp. 2813-2820, Sep. 2020, doi: 10.1002/mop.32371.
Z. Zhang and B. Zhang, “Omnidirectional and Efficient Wireless Power Transfer System for Logistic Robots,” IEEE Access, vol. 8, pp. 13683-13693, 2020, doi: 10.1109/ACCESS.2020.2966225.
G. Crupi, X. Bao, O. J. Babarinde, D. M. M. P. Schreurs, and B. Nauwelaers, “Biosensor using a one-port interdigital capacitor: A resonance-based investigation of the permittivity sensitivity for microfluidic broadband bioelectronics applications,” Electron., vol. 9, no. 2, Feb. 2020, doi: 10.3390/electronics9020340.
S. Harnsoongnoen and B. Buranrat, “Advances in a Microwave Sensor-Type Interdigital Capacitor with a Hexagonal Complementary Split-Ring Resonator for Glucose Level Measurement,” Chemosensors, vol. 11, no. 4, 2023, doi: 10.3390/chemosensors11040257.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).