Characterizing, Predicting, and Mapping Soil Available Phosphor, pH, and Electrical Conductivity in Rubber Plantation Based on Three Different Methods of Ordinary Kriging in GIS Environment
How to cite (IJASEIT) :
X. Zou et al., “Soil quality assessment of different Hevea brasiliensis plantations in tropical China,” J. Environ. Manage., vol. 285, no. January, p. 112147, 2021, doi: 10.1016/j.jenvman.2021.112147.
H. Island, “Rui Sun,” Eff. rubber Plant. soil Physicochem. Prop. Hainan Isl., vol. 50, no. 6, pp. 1351–1363, 2021, doi: 10.1002/jeq2.20282.This.
G. O. Enaruvbe, A. O. Osewole, O. P. Mamudu, and J. Rodrigo-Comino, “Impacts of land-use changes on soil fertility in Okomu Forest Reserve, Southern Nigeria,” L. Degrad. Dev., vol. 32, no. 6, pp. 2130–2142, 2021, doi: 10.1002/ldr.3869.
P. Panklang, P. Thaler, A. Thoumazeau, R. Chiarawipa, S. Sdoodee, and A. Brauman, “How 75 years of rubber monocropping affects soil fauna and nematodes as the bioindicators for soil biodiversity quality index,” Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 72, no. 1, pp. 612–622, 2022, doi: 10.1080/09064710.2022.2034930.
T. Mizik, “How can precision farming work on a small scale? A systematic literature review,” Precis. Agric., vol. 24, no. 1, pp. 384–406, 2023, doi: 10.1007/s11119-022-09934-y.
A. R. Diniz et al., “Influence of Spatial Variability of Soil Chemical Attributes on the Nutritional Status and Growth of the Rubber Tree,” Biosci. J., vol. 38, 2022, doi: 10.14393/BJ-v38n0a2022-54026.
Y. Yuan et al., “Delineating soil nutrient management zones based on optimal sampling interval in medium- and small-scale intensive farming systems,” Precis. Agric., vol. 23, no. 2, pp. 538–558, 2022, doi: 10.1007/s11119-021-09848-1.
P. Kumar, M. Sharma, N. P. Butail, A. K. Shukla, and P. Kumar, “Spatial variability of soil properties and delineation of management zones for Suketi basin, Himachal Himalaya, India,” Environ. Dev. Sustain., no. 0123456789, 2023, doi: 10.1007/s10668-023-03181-5.
P. Puttaso, W. Namanusart, K. Thumanu, B. Kamolmanit, A. Brauman, and P. Lawongsa, “Assessing the effect of rubber (Hevea brasiliensis (willd. ex a. juss.) muell. arg.) leaf chemical composition on some soil properties of differently aged rubber tree plantations,” Agronomy, vol. 10, no. 12, pp. 1–15, 2020, doi: 10.3390/agronomy10121871.
M. A. E. Abdel Rahman, Y. M. Zakarya, M. M. Metwaly, and G. Koubouris, “Deciphering soil spatial variability through geostatistics and interpolation techniques,” Sustain., vol. 13, no. 1, pp. 1–13, 2021, doi: 10.3390/su13010194.
G. Sahbeni and B. Székely, “Spatial modeling of soil salinity using kriging interpolation techniques: A study case in the Great Hungarian Plain,” Eurasian J. Soil Sci., vol. 11, no. 2, pp. 102–112, 2022, doi: 10.18393/ejss.1013432.
S. Selmy, S. A. El-Aziz, A. El-Desoky, and M. El-Sayed, “Characterizing, predicting, and mapping of soil spatial variability in Gharb El-Mawhoub area of Dakhla Oasis using geostatistics and GIS approaches,” J. Saudi Soc. Agric. Sci., vol. 21, no. 6, pp. 383–396, 2022, doi: 10.1016/j.jssas.2021.10.013.
M. Criado, A. Martínez-Graña, F. Santos-Francés, and L. Merchán, “Improving the management of a semi-arid agricultural ecosystem through digital mapping of soil properties: The case of salamanca (spain),” Agronomy, vol. 11, no. 6, 2021, doi: 10.3390/agronomy11061189.
N. Shahinzadeh, T. Babaeinejad, K. Mohsenifar, and N. Ghanavati, “Spatial variability of soil properties determined by the interpolation methods in the agricultural lands,” Model. Earth Syst. Environ., vol. 8, no. 4, pp. 4897–4907, 2022, doi: 10.1007/s40808-022-01402-w.
E. Kim, S. H. Nam, C. H. Ahn, S. Lee, J. W. Koo, and T. M. Hwang, “Comparison of spatial interpolation methods for distribution map an unmanned surface vehicle data for chlorophyll-a monitoring in the stream,” Environ. Technol. Innov., vol. 28, p. 102637, 2022, doi: 10.1016/j.eti.2022.102637.
G. A. Tiruneh, T. Y. Alemayehu, D. T. Meshesha, E. S. Vogelmann, J. M. Reichert, and N. Haregeweyn, “Spatial variability of soil chemical properties under different land-uses in Northwest Ethiopia,” PLoS One, vol. 16, no. 6 June, pp. 1–18, 2021, doi: 10.1371/journal.pone.0253156.
C. Van Huynh et al., “Application GIS and remote sensing for soil organic carbon mapping in a farm-scale in the hilly area of central Vietnam,” Air, Soil Water Res., vol. 15, 2022, doi: 10.1177/11786221221114777.
D. Igaz, K. Šinka, P. Varga, G. Vrbičanová, E. Aydın, and A. Tárník, “The evaluation of the accuracy of interpolation methods in crafting maps of physical and hydro-physical soil properties,” Water (Switzerland), vol. 13, no. 2, 2021, doi: 10.3390/w13020212.
Z. Haroon et al., “Development of Management Zones for Site-Specific Fertilization in Mustard Fields,” p. 1, 2022, doi: 10.3390/environsciproc2022023001.
G. Soropa, O. M. Mbisva, J. Nyamangara, E. Z. Nyakatawa, N. Nyapwere, and R. M. Lark, “Spatial variability and mapping of soil fertility status in a high-potential smallholder farming area under sub-humid conditions in Zimbabwe,” SN Appl. Sci., vol. 3, no. 4, pp. 1–19, 2021, doi: 10.1007/s42452-021-04367-0.
E. H. El Hamzaoui and M. El Baghdadi, “Characterizing spatial variability of some soil properties in Beni-Moussa irrigated perimeter from Tadla plain (Morocco) using geostatistics and kriging techniques,” J. Sediment. Environ., vol. 6, no. 3, pp. 381–394, 2021, doi: 10.1007/s43217-021-00050-x.
N. Yeneneh, E. Elias, and G. L. Feyisa, “Assessment of the spatial variability of selected soil chemical properties using geostatistical analysis in the north-western highlands of Ethiopia,” Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 72, no. 1, pp. 1009–1019, 2022, doi: 10.1080/09064710.2022.2142658.
V. Gökmen, A. Sürücü, M. Budak, and A. V. Bilgili, “Modeling and mapping the spatial variability of soil micronutrients in the Tigris basin,” J. King Saud Univ. - Sci., vol. 35, no. 6, 2023, doi: 10.1016/j.jksus.2023.102724.
X. Yao, K. Yu, Y. Deng, J. Liu, and Z. Lai, “Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of Southern China,” J. For. Res., vol. 31, no. 6, pp. 2385–2394, 2020, doi: 10.1007/s11676-019-01014-8.
M. Z. Khan, M. R. Islam, A. B. A. Salam, and T. Ray, “Spatial Variability and Geostatistical Analysis of Soil Properties in the Diversified Cropping Regions of Bangladesh Using Geographic Information System Techniques,” Appl. Environ. Soil Sci., vol. 2021, 2021, doi: 10.1155/2021/6639180.
B. Zhang, L. Niu, T. Jia, X. Yu, and D. She, “Spatial variability of soil organic matter and total nitrogen and the influencing factors in Huzhu County of Qinghai Province, China,” Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 72, no. 1, pp. 576–588, 2022, doi: 10.1080/09064710.2021.2023624.
W. Hassan, B. Alshameri, M. N. Nawaz, Z. Ijaz, and M. Qasim, “Geospatial and statistical interpolation of geotechnical data for modeling zonation maps of Islamabad, Pakistan,” Environ. Earth Sci., vol. 81, no. 24, pp. 1–23, 2022, doi: 10.1007/s12665-022-10669-2.
X. Huang et al., “Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China,” Land, vol. 11, no. 1, pp. 1–14, 2022, doi: 10.3390/land11010134.
W. Liu, L. Ma, Z. Smanov, K. Samarkhanov, and J. Abuduwaili, “Clarifying Soil Texture and Salinity Using Local Spatial Statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan Border Area, Central Asia,” Agronomy, vol. 12, no. 2, 2022, doi: 10.3390/agronomy12020332.
C. de O. F. Silva, R. L. Manzione, and S. R. de M. Oliveira, Exploring 20-year applications of geostatistics in precision agriculture in Brazil: what’s next?, vol. 24, no. 6. Springer US, 2023. doi: 10.1007/s11119-023-10041-9.
I. Bogunovic, S. Trevisani, M. Seput, D. Juzbasic, and B. Durdevic, “Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia,” Catena, vol. 154, pp. 50–62, 2017, doi: 10.1016/j.catena.2017.02.018.
W. Zhang, L. Cheng, R. Xu, X. He, W. Mo, and J. Xu, “Assessing Spatial Variation and Driving Factors of Available Phosphorus in a Hilly Area (Gaozhou, South China) Using Modeling Approaches and Digital Soil Mapping,” Agric., vol. 13, no. 8, pp. 1–18, 2023, doi: 10.3390/agriculture13081541.
A. N. Kravchenko, “Influence of Spatial Structure on Accuracy of Interpolation Methods,” Soil Sci. Soc. Am. J., vol. 67, no. 5, pp. 1564–1571, 2003, doi: 10.2136/sssaj2003.1564.
Z. Ijaz, C. Zhao, N. Ijaz, Z. ur Rehman, and A. Ijaz, “Development and optimization of geotechnical soil maps using various geostatistical and spatial interpolation techniques: a comprehensive study,” Bull. Eng. Geol. Environ., vol. 82, no. 6, pp. 1–21, 2023, doi: 10.1007/s10064-023-03244-x.
V. Tamburi, A. Shetty, and S. Shrihari, “Spatial variability of vertisols nutrients in the Deccan plateau region of north Karnataka, India,” Environ. Dev. Sustain., vol. 23, no. 2, pp. 2910–2923, 2021, doi: 10.1007/s10668-020-00700-6.
A. Abdu, F. Laekemariam, G. Gidago, A. Kebede, and L. Getaneh, “Variability analysis of soil properties, mapping, and crop test responses in Southern Ethiopia,” Heliyon, vol. 9, no. 3, p. e14013, 2023, doi: 10.1016/j.heliyon.2023.e14013.
P. N. Eze, S. K. Kumahor, and N. M. Kebonye, “Predictive mapping of soil copper for site-specific micronutrient management using GIS-based sequential Gaussian simulation,” Model. Earth Syst. Environ., vol. 8, no. 1, pp. 1261–1271, 2022, doi: 10.1007/s40808-021-01156-x.
F. Saygın, H. Aksoy, P. Alaboz, and O. Dengiz, “Different approaches to estimating soil properties for digital soil map integrated with machine learning and remote sensing techniques in a sub-humid ecosystem,” Environ. Monit. Assess., vol. 195, no. 9, 2023, doi: 10.1007/s10661-023-11681-0.
M. M. Njayou, M. Ngounouno Ayiwouo, L. L. Ngueyep Mambou, and I. Ngounouno, “Using geostatistical modeling methods to assess concentration and spatial variability of trace metals in soils of the abandoned gold mining district of Bindiba (East Cameroon),” Model. Earth Syst. Environ., vol. 9, no. 1, pp. 1401–1415, 2023, doi: 10.1007/s40808-022-01560-x.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).