Comparison of Classification Algorithm and Language Model in Accounting Financial Transaction Record: A Natural Language Processing Approach
How to cite (IJASEIT) :
S. K. Rahayu, I. Budiarti, D. W. Firdaus, and V. Onegina, “Digitalization and Informal Msme: Digital Financial Inclusion for Msme Development in the Formal Economy,” J. East. Eur. Cent. Asian Res., vol. 10, no. 1, pp. 9–19, 2023, doi:10.15549/jeecar.v10i1.1056.
B. A. Makayasa and A. Fatwanto, “Telematika A Comparative Study on the Combination of Classification Algorithm and Language Model Implementation for Smart Accounting System,” vol. 16, no. 2, pp. 69–81, 2023.
S. S. Harahap, A. Halim, and Y. Prayoga, “The Role Of Financial Statements On Increasing Income In SMEs,” Int. J. Community Serv., vol. 2, no. 2, pp. 157–164, 2022, doi: 10.51601/ijcs.v2i2.80.
D. Simanjuntak, S. Nurjanah, Willy, and I. Muda, “Historical cost vs current cost accounting method,” Brazilian J. Dev., vol. 9, no. 12, pp. 31828–31840, 2023, doi: 10.34117/bjdv9n12-085.
D. Nurjannah, E. T. D. R. W. Wardhana, P. Handayati, A. Winarno, and M. Jihadi, “The Influence of Managerial Capabilities, Financial Literacy, and Risk Mitigation on Msmes Business Sustainability,” J. Law Sustain. Dev., vol. 11, no. 4, pp. 1–16, 2023, doi: 10.55908/sdgs.v11i4.520.
R. Al Hashfi, A. Zusryn, N. Khoirunnisa, and A. Listyowati, “Online Payment: Individual Characteristics and Digital Financial Inclusion in OIC Countries,” J. Islam. Monet. Econ. Financ., vol. 6, no. 4 SE-Articles, Sep. 2020, doi: 10.21098/jimf.v6i4.1148.
S. Salloum, T. Gaber, S. Vadera, and K. Shaalan, “A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques,” IEEE Access, vol. 10, pp. 65703–65727, 2022, doi: 10.1109/ACCESS.2022.3183083.
C. Mugisha and I. Paik, “Comparison of Neural Language Modeling Pipelines for Outcome Prediction From Unstructured Medical Text Notes,” IEEE Access, vol. 9, no. 2, pp. 137176–137187, 2022, doi: 10.1109/ACCESS.2022.3148279.
S. Amin et al., “Recurrent Neural Networks With TF-IDF Embedding Technique for Detection and Classification in Tweets of Dengue Disease,” IEEE Access, vol. 8, pp. 131522–131533, 2020, doi: 10.1109/ACCESS.2020.3009058.
M. Jayaratne and B. Jayatilleke, “Predicting Personality Using Answers to Open-Ended Interview Questions,” IEEE Access, vol. 8, pp. 115345–115355, 2020, doi: 10.1109/ACCESS.2020.3004002.
M. D. R. Wahyudi, “Evaluation of TF-IDF Algorithm Weighting Scheme in The Qur’an Translation Clustering with K-Means Algorithm,” J. Inf. Technol. Comput. Sci., vol. 6, no. 2, pp. 117–129, 2021, doi: https://doi.org/10.25126/jitecs.202162295.
I. Iswandi, I. S. Suwardi, and N. U. Maulidevi, “Penelitian Awal : Otomatisasi Interpretasi Data Akuntansi Berbasis Natural Language Processing,” Sriwij. J. Inf. Syst., vol. 5, no. 2, 2013.
G. G. Jayasurya, S. Kumar, B. K. Singh, and V. Kumar, “Analysis of Public Sentiment on COVID-19 Vaccination Using Twitter,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 1101–1111, 2022, doi: 10.1109/TCSS.2021.3122439.
S. D. A. Bujang et al., “Multiclass Prediction Model for Student Grade Prediction Using Machine Learning,” IEEE Access, vol. 9, pp. 95608–95621, 2021, doi: 10.1109/ACCESS.2021.3093563.
M. U. Siregar, I. Setiawan, N. Z. Akmal, D. Wardani, Y. Yunitasari, and A. Wijayanto, “Optimized Random Forest Classifier Basedon Genetic Algorithm for Heart Failure Prediction,” in 2022 Seventh International Conference on Informatics and Computing (ICIC), 2022, pp. 1–6. doi: 10.1109/ICIC56845.2022.10006987.
H. Kusuma, M. Muafi, and M. N. Kholid, “Pro-Environmental MSMES Performance_ The Role of Green it Adoption, Green Innovative Behavior, and Financial Accounting Resources.pdf.” pp. 01–21, 2023.
M. F. Mridha, A. A. Lima, K. Nur, S. C. Das, M. Hasan, and M. M. Kabir, “A Survey of Automatic Text Summarization: Progress, Process and Challenges,” IEEE Access, vol. 9, pp. 156043–156070, 2021, doi: 10.1109/ACCESS.2021.3129786.
M. Hidayat, R. Hidayat, and D. Otik Kurniawati, “Comparison of the Use of Bigrams and Stopword Removal for Classification Using Naive Bayes (Case Study on Sentiment Analysis of By.U Internet Users),” Proc. - 2021 Int. Conf. Softw. Eng. Comput. Syst. 4th Int. Conf. Comput. Sci. Inf. Manag. ICSECS-ICOCSIM 2021, pp. 447–452, 2021, doi: 10.1109/ICSECS52883.2021.00088.
X. Chen, P. Cong, and S. Lv, “A Long-Text Classification Method of Chinese News Based on BERT and CNN,” IEEE Access, vol. 10, pp. 34046–34057, 2022, doi: 10.1109/ACCESS.2022.3162614.
J. Jiang et al., “Enhancements of Attention-Based Bidirectional LSTM for Hybrid Automatic Text Summarization,” IEEE Access, vol. 9, pp. 123660–123671, 2021, doi: 10.1109/ACCESS.2021.3110143.
R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan, and K. Kotecha, “A Deep Learning Model Based on BERT and Sentence Transformer for Semantic Keyphrase Extraction on Big Social Data,” IEEE Access, vol. 9, pp. 165252–165261, 2021, doi: 10.1109/ACCESS.2021.3133651.
H. S. Nawaz, Z. Shi, Y. Gan, A. Hirpa, J. Dong, and H. Zheng, “Temporal Moment Localization via Natural Language by Utilizing Video Question Answers as a Special Variant and Bypassing NLP for Corpora,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 6174–6185, 2022, doi: 10.1109/TCSVT.2022.3162650.
A. Radhakrishnan, D. Mahapatra, and A. James, “Consumer Document Analytical Accelerator Hardware,” IEEE Access, vol. 11, pp. 5161–5167, 2023, doi: 10.1109/ACCESS.2023.3237463.
Y. Handika, I. F. Hanif, and F. N. Hasan, “Analysis of Public Sentiment Towards POLRI’s Performance using Naive Bayes and K-Nearest Neighbors,” IJID (International J. Informatics Dev., vol. 13, no. 1 SE-Articles, pp. 386–399, Jun. 2024, doi: 10.14421/ijid.2024.4500.
H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, “Capbug-a framework for automatic bug categorization and prioritization using nlp and machine learning algorithms,” IEEE Access, vol. 9, no. March, pp. 50496–50512, 2021, doi: 10.1109/ACCESS.2021.3069248.
R. Sonbol, G. Rebdawi, and N. Ghneim, “The Use of NLP-Based Text Representation Techniques to Support Requirement Engineering Tasks: A Systematic Mapping Review,” IEEE Access, vol. 10, pp. 62811–62830, 2022, doi: 10.1109/ACCESS.2022.3182372.
A. A. Wazrah and S. Alhumoud, “Sentiment Analysis Using Stacked Gated Recurrent Unit for Arabic Tweets,” IEEE Access, vol. 9, pp. 137176–137187, 2021, doi: 10.1109/ACCESS.2021.3114313.
S. Lyu, X. Tian, Y. Li, B. Jiang, and H. Chen, “Multiclass Probabilistic Classification Vector Machine,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 10, pp. 3906–3919, 2020, doi: 10.1109/TNNLS.2019.2947309.
S. Sugriyono and M. U. Siregar, “Prapemrosesan klasifikasi algoritme kNN menggunakan K-means dan matriks jarak untuk dataset hasil studi mahasiswa,” J. Teknol. dan Sist. Komput., vol. 8, no. 4, pp. 311–316, 2020, [Online]. Available: https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/download/13874/12640
Husni, F. H. Rachman, I. O. Suzanti, and M. K. Sari, “Word Ambiguity Identification using POS Tagging in Automatic Essay Scoring,” in 2022 IEEE 8th Information Technology International Seminar (ITIS), 2022, pp. 140–144. doi: 10.1109/ITIS57155.2022.10009034.
M. Khushi et al., “A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data,” IEEE Access, vol. 9, pp. 109960–109975, 2021, doi: 10.1109/ACCESS.2021.3102399.
I. Ashrafi et al., “Banner: A Cost-Sensitive Contextualized Model for Bangla Named Entity Recognition,” IEEE Access, vol. 8, pp. 58206–58226, 2020, doi: 10.1109/ACCESS.2020.2982427.
S. Singh and A. Mahmood, “The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures,” IEEE Access, vol. 9, pp. 68675–68702, 2021, doi: 10.1109/ACCESS.2021.3077350.
J. M. Pérez et al., “Assessing the Impact of Contextual Information in Hate Speech Detection,” IEEE Access, vol. 11, pp. 30575–30590, 2023, doi: 10.1109/ACCESS.2023.3258973.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).