IoT-based Flex Sensor Gloves for Immobility Patients: A Prototype

Azriyenni Azhari Zakri (1), R.A Rizka Qori Yuliani Putri (2), Syahru Romadoni (3), Yesi Hasneli (4)
(1) Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, 28293, Riau, Indonesia
(2) Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, 28293, Riau, Indonesia
(3) Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, 28293, Riau, Indonesia
(4) Department of Medical-Surgical, Faculty of Nursing, Universitas Riau, Pekanbaru, Riau, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Azhari Zakri , Azriyenni, et al. “IoT-Based Flex Sensor Gloves for Immobility Patients: A Prototype”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 3, June 2024, pp. 920-7, doi:10.18517/ijaseit.14.3.19514.
Immobility patients often experience difficulties in daily interactions, especially communicating with nurses or carers. This study designed a glove prototype installed with a tension sensor as a communication tool to help patients. The designed prototype, a cutting-edge innovation, is paired with five flexible sensors to make it easier for nurses to read the five-finger movement signals. This prototype is not just a tool but a lifeline, equipped with temperature and pulse sensors that provide real-time monitoring of the patient’s physical condition, enhancing patient safety. Testing of the flex sensor glove prototype is carried out by processing flex-sensor input data temperature sensors, and Pulse Oximeter sensors so that they can be displayed on the Blynk application. Every movement conveys the patient's emotions and is implemented with Arduino UNO; a wireless serial interface is used for data transmission between transmitter and receiver. In an emergency, communications will be transmitted using a GSM module. The flex sensor indentation is processed by Arduino-Nano and sent to the Blynk application. Every movement conveys the patient's emotions and is implemented with Arduino UNO; a wireless serial interface is used for data transmission between transmitter and receiver. In an emergency, communications will be transmitted using a GSM module. The results of the flex sensor test show that the prototype will send notifications in the form of requests to the Blynk application.

F. Rahman, A. Kumar, N. Shabana and S. Srinivasan, "Design of a wireless physiological parameter measurement and monitoring system," 2007 International Conference on Computer Engineering & Systems, Cairo, Egypt, 2007, pp. 401-405, doi:10.1109/icces.2007.4447077.

F. Rozie, “Rancang Bangun Alat Monitoring Jumlah Denyut Nadi / Jantung Berbasis Android,” Journal of Electrical Engineering, Energy, and Information Technology (J3EIT), vol. 4, no. 1, Feb. 2016, doi: https://doi.org/10.26418/j3eit.v4i1.13805.

M. Abtahi et al., “Merging fNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinsons Disease,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 6, pp. 1246–1253, Jun. 2020, doi:10.1109/tnsre.2020.2987888.

A. Ranjan, V. Sehrawat, J. S. Jadon, V. Sharda and H. Sinha, "Design of sign language system; using APR9600 and glove technology," 2017 International Conference on Smart Technologies For Smart Nation (SmartTechCon), Bengaluru, India, 2017, pp. 1348-1351, doi:10.1109/SmartTechCon.2017.8358586.

H. Isyanto and I. Jaenudin, “Monitoring Dua Parameter Data Medik Pasien (Suhu Tubuh dan Detak Jantung) Berbasis Aruino Nirkabel,” eLEKTUM, vol. 15, no. 1, pp. 19–24, May 2018, doi:10.24853/elektum.15.1.19-24.

W. Fahri Ramadhan, “Rancang Bangun Alat Ukur Detak Jantung Menggunakan Pulse Sensor Sen-11574 Berbasis Arduino Pro Mini dengan Smartphone Android dan OLED SSD1306,” digilib.uin-suka.ac.id, Nov. 21, 2018.

Mokh. S. Hadi, I. A. Elbaith Zaeni, M. D. Maulana, A. P. Wibawa, and A. N. Afandi, “IOT Cloud Data Logger for Heart Rate Monitoring Device,” Proceedings of the 2nd International Conference on Vocational Education and Training (ICOVET 2018), 2019, doi:10.2991/icovet-18.2019.52.

A. Patombongi, “Rancang Bangun Alat Pendeteksi Detak Jantung Menggunakan Pulse Sensor Berbasis Arduino,” Journal Techno Entrepreneur Acta, vol. 3, no. 2, 2018, Accessed: Jun. 09, 2024. [Online]. Available: https://journal.unifa.ac.id/index.php/tea/article/view/61

Arthana, I.K.R. Perancangan Alat Pendeteksi Detak Jantung Dan Notifikasi Melalui Sms (2017) Semin Nas Ris Inov., pp. 889-895, Bali, 2017.

Sri Purwiyanti, Rancang Bangun Alat Pendeteksi Detak Jantung. 2018.

F. Rahman, A. Kumar, N. Shabana, and S. Srinivasan, “Design of a wireless physiological parameter measurement and monitoring system,” 2007 International Conference on Computer Engineering & Systems, Nov. 2007, doi: 10.1109/icces.2007.4447077.

Wahyu Kusuma Raharja, “Purwarupa Alat Pendeteksi Detak Jantung Berbasis Atmega328,” Depok, 2018.

G. Hota, S. Sharma, A. Rathore, S. Joshi, and H. Shah, “An Integrated Visual Signalling, Localisation & Health Monitoring System for Soldier Assistance,” 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Feb. 2019, doi: 10.1109/icecct.2019.8869357.

I. Anas, M. Basri, and S. Nur, “Social Justice in CALL-Mediated EFL Teaching: A Case of Indonesia,” Tamaddun, vol. 22, no. 2, pp. 122–140, Dec. 2023, doi: 10.33096/tamaddun.v22i2.561.

H. Al Shamsi, A. G. Almutairi, S. Al Mashrafi, and T. Al Kalbani, “Implications of language barriers for healthcare: A systematic review,” Oman Medical Journal, vol. 35, no. 2, pp. 1–7, 2020, doi:10.5001/omj.2020.40.

R. Senthil Kumar, P. Leninpugalhanthi, S. Rathika, G. Rithika, and S. Sandhya, “Implementation of IoT Based Smart Assistance Gloves for Disabled People,” 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Mar. 2021, doi:10.1109/icaccs51430.2021.9441855.

M. Iqbal. “Alat Bantu Komunikasi Pasien Penderita Pasca Stroke Digilib Perpustakaan Universitas Riau,” Digilib Perpustakaan Universitas Riau, 2021.

M. I. Azriyenni, “Alat Bantu Komunikasi Melalui Gerakan Jari untuk Pasien Penderita Pasca Stroke,” S00202104498, 2021.

J. H. Low et al., "Hybrid Tele-Manipulation System Using a Sensorized 3-D-Printed Soft Robotic Gripper and a Soft Fabric-Based Haptic Glove," in IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 880-887, April 2017, doi: 10.1109/LRA.2017.2655559.

D. F. Banu, N. Kumaresan, N. L. Kishore, D. Leena, P. Madhumitha and G. Priyanka, "IoT Based Smart Mitten for Plegia Patient's Health Monitoring System," 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2022, pp. 2001-2007, doi: 10.1109/icaccs54159.2022.9785237.

A. A. Zakri et al., “Designing Flex Sensor Gloves with Temperature Sensor & Pulse Sensor to Help Stroke Patients,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no. 12, pp. 23–31, Dec. 2022, doi: 10.46338/ijetae1222_03.

H. K. Yap, N. Kamaldin, J. H. Lim, F. A. Nasrallah, J. C. H. Goh, and C. H. Yeow, “A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 6, pp. 782–793, Jun. 2017, doi:10.1109/tnsre.2016.2602941.

J. Pan, Y. Luo, Y. Li, C. K. Tham, C. H. Heng, and A. V. Y. Thean, “A Wireless Multi-Channel Capacitive Sensor System for Efficient Glove-Based Gesture Recognition with AI at the Edge,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1624–1628, Sep. 2020, doi: 10.1109/tcsii.2020.3010318.

E. Ayodele et al., “A Weft Knit Data Glove,” IEEE Trans Instrum Meas, vol. 70, 2021, doi: 10.1109/tim.2021.3068173.

C. K. Jha, K. Gajapure, and A. L. Chakraborty, “Design and Evaluation of an FBG Sensor-Based Glove to Simultaneously Monitor Flexure of Ten Finger Joints,” IEEE Sens J, vol. 21, no. 6, pp. 7620–7630, Mar. 2021, doi: 10.1109/jsen.2020.3046521.

Y. Zhou, A. Ibrahim, K. G. Hardy, M. E. Jenkins, M. D. Naish, and A. L. Trejos, “Design and Preliminary Performance Assessment of a Wearable Tremor Suppression Glove,” IEEE Trans Biomed Eng, vol. 68, no. 9, pp. 2846–2857, Sep. 2021, doi:10.1109/tbme.2021.3080622.

T. Simoes Dias, J. J. A. M. Junior, and S. F. Pichorim, “An Instrumented Glove for Recognition of Brazilian Sign Language Alphabet,” IEEE Sens J, vol. 22, no. 3, pp. 2518–2529, Feb. 2022, doi:10.1109/jsen.2021.3136790.

A. A. Zakri, A. Arfianti, A. Hamzah, M. Iqbal, H. Madjid, and N. F. Aulia, “Designing Flex Sensor Gloves with Temperature Sensor & Pulse Sensor to Help Stroke Patients,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no. 12, pp. 23–31, Dec. 2022, doi: 10.46338/ijetae1222_03.

A. Crawford and H. Harris, “Caring for adults with impaired physical mobility,” Nursing, vol. 46, no. 12, pp. 36–41, 2016, doi:10.1097/01.nurse.0000504674.19099.1d.

M. L. Stransky, K. M. Jensen, and M. A. Morris, “Adults with Communication Disabilities Experience Poorer Health and Healthcare Outcomes Compared to Persons Without Communication Disabilities,” Journal of General Internal Medicine, vol. 33, no. 12, pp. 2147–2155, Aug. 2018, doi: 10.1007/s11606-018-4625-1.

G. Bartlett, R. Blais, R. Tamblyn, R. J. Clermont, and B. MacGibbon, “Impact of patient communication problems on the risk of preventable adverse events in acute care settings,” Canadian Medical Association Journal, vol. 178, no. 12, pp. 1555–1562, Jun. 2008, doi:10.1503/cmaj.070690.

D. Quinto-Pozos, Considering Communication Disorders and Differences in the Signed Language Modality. Blue Ridge Summit: Multilingual Matters, 2014.

Northern Arizona University, “Cognitive Communication Disorders,” [Online]. Available: https://nau.edu/csd/. 2004

V. H. S. Dobie RA, Ed., “Hearing Loss: Determining Eligibility for Social Security Benefits,”. Washington (DC), National Academies Press (US), , 2004.

H. Al Shamsi, A. G. Almutairi, S. Al Mashrafi, and T. Al Kalbani, “Implications of language barriers for healthcare: A systematic review,” Oman Medical Journal, vol. 35, no. 2, pp. 1–7, 2020, doi:10.5001/omj.2020.40.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).