Toxicity Detection of Pollutants in the Tallo River Using Simple Biomarkers of Oryzias celebensis Embryo

Khusnul Yaqin (1), Sri Wahyuni Rahim (2), Basse Siang Parawansa (3), Hadiratul Kudsiah (4), Rahmadi Tambaru (5), Dwi Kesuma Sari (6), Etty Riani (7), Andi Dina Hardiana (8), Meimulya (9), Yulia Indasari Lalombo (10)
(1) Postgraduate School of Fisheries, Universitas Hasanuddin, Tamalanrea, Makassar, 90425, Indonesia
(2) Study Program of Aquatic Resources Management, Department of Fisheries, Universitas Hasanuddin, Tamalanrea,Makassar, Indonesia
(3) Study Program of Aquatic Resources Management, Department of Fisheries, Universitas Hasanuddin, Tamalanrea,Makassar, Indonesia
(4) Study Program of Aquatic Resources Management, Department of Fisheries, Universitas Hasanuddin, Tamalanrea,Makassar, Indonesia
(5) Department of Marine Science, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Tamalanrea, Makassar, Indonesia
(6) Department of Veterinary Medicine, Faculty of Medicine, Universitas Hasanuddin, Tamalanrea,Makassar, Indonesia
(7) Faculty of Fisheries and Marine Science, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
(8) Postgraduate School of Fisheries, Universitas Hasanuddin, Tamalanrea, Makassar, 90425, Indonesia
(9) Postgraduate School of Fisheries, Universitas Hasanuddin, Tamalanrea, Makassar, 90425, Indonesia
(10) Postgraduate School of Fisheries, Universitas Hasanuddin, Tamalanrea, Makassar, 90425, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Yaqin, Khusnul, et al. “Toxicity Detection of Pollutants in the Tallo River Using Simple Biomarkers of Oryzias Celebensis Embryo”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 2, Apr. 2024, pp. 665-74, doi:10.18517/ijaseit.14.2.19625.
The current research demonstrated the use of simple biomarkers from Oryzias celebensis embryos to detect the effects of pollutants from the Tallo River. The biomarkers used in this research were somite number, egg biometrics, heart rate, survival rate, and hatching time. Pollutants were sampled from three hot spots in the Tallo River (Station 1 (S1), Station 2 (S2) and Station 3 (S3)). Two exposure models were used in this study: in situ and semi-in situ exposure. In situ exposure was carried out by placing ten embryos (stage 17) at each station for six days. Semi-in situ embryos (10 animals) were exposed to polluted water from each station and embryo rearing media (ERM) as a control at stage 17 until hatching in the laboratory. Biomarker data were analyzed using ANOVA (Analysis of variance) to determine the sensitivity of each biomarker used.  Almost all the embryos used as model animals in the in situ experiment died, except for two embryos placed in stations 2 and 3. The embryos from station 2 hatched after 18 days. The embryos from station 3 died after 18 days.  The semi in situ experiment showed that the number of somites and heart rate showed statistically significant differences between embryos exposed to water from S1 and control embryos (p < 0.05).  Other endpoints did not show potential as biomarkers.  This study suggested that the number of somites and heart rate of O. celebensis embryos could potentially be used as biomarkers in effect-based monitoring.

D. A. Tokarz and J. C. Wolf, “Animal Models in Toxicologic Research: Nonmammalian,” in Haschek and Rousseaux’s Handbook of Toxicologic Pathology, Elsevier, 2022, pp. 811–857. doi:10.1016/B978-0-12-821044-4.00020-0

X. Li et al., “Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury,” Sci. Total Environ., vol. 841, p. 156590, 2022. doi: 10.1016/j.scitotenv.2022.156590.

A. K. Dasmahapatra and P. B. Tchounwou, “Histopathological evaluation of the interrenal gland (adrenal homolog) of Japanese medaka (Oryzias latipes) exposed to graphene oxide,” Environ. Toxicol., vol. 37, no. 10, pp. 2460–2482, 2022. doi:10.1002/tox.23610.

Q. Liu et al., “Toxicity and potential underlying mechanism of Karenia selliformis to the fish Oryzias melastigma,” Aquat. Toxicol., vol. 262, p. 106643, 2023. doi: 10.1016/j.aquatox.2023.106643.

R. J. Brown et al., “Are changes in vitellogenin concentrations in fish reliable indicators of chemical-induced endocrine activity?,” Ecotoxicol. Environ. Saf., vol. 266, p. 115563, 2023. doi:10.1016/j.ecoenv.2023.115563.

K. Yaqin, S. W. Rahim, and D. K. Sari, “Dry transportation of Oryzias wolasi embryo for ecotoxicological studies,” IOP Conf. Ser. Earth Environ. Sci., vol. 860, no. 1, p. 012102, 2021. doi: 10.1088/1755-1315/860/1/012102.

K. Yaqin, S. W. Rahim, D. K. Sari, and J. Tresnati, “Can Oryzias celebensis Embryo be Transported Dry?,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 934, no. 1, p. 12067. doi:10.1088/1755-1315/934/1/012067.

K. Liu, J. Song, W. Chi, H. Liu, S. Ge, and D. Yu, “Developmental toxicity in marine medaka (Oryzias melastigma) embryos and larvae exposed to nickel,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 248, no. 7, p. 109082, 2021, doi: 10.1016/j.cbpc.2021.109082.

K. Chowdhury, S. Lin, and S.-L. Lai, “Comparative study in Zebrafish and medaka unravels the mechanisms of tissue regeneration,” Front. Ecol. Evol., vol. 10, p. 783818, 2022. doi:10.3389/fevo.2022.783818.

X. Xi, P. Sun, R. Sun, Y. Tian, and M. Heino, “Size-selective harvesting alters biological traits of marine medaka (Oryzias melastigma),” Fish. Res., vol. 266, p. 106775, 2023. doi:10.1016/j.fishres.2023.106775.

Y. A. Kafula et al., “Pesticide sensitivity of Nothobranchius neumanni, a temporary pond predator with a non-generic life-history,” Chemosphere, vol. 291, p. 132823, 2022. doi:10.1016/j.chemosphere.2021.132823.

EU, “Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. page L 276/33.,” 2010.

T. Braunbeck et al., “The fish embryo test (FET): origin, applications, and future,” Environ. Sci. Pollut. Res., vol. 22, no. 21, pp. 16247–16261, 2014, doi: 10.1007/s11356-014-3814-7. doi: 10.1007/s11356-014-3814-7

J. Song et al., “Observation and analysis of morphology abnormalities in development of Oryzias melastigma embryos,” J. Oceanol. Limnol., 2021. doi: 10.1007/s00343-020-0227-y

I. A. Signore et al., “Zebrafish and medaka: Model organisms for a comparative developmental approach of brain asymmetry,” Philos. Trans. R. Soc. B Biol. Sci., 2009. doi: 10.1098/rstb.2008.0260.

J. Chen, C. Fang, R. Zheng, and J. Bo, “Embryotoxicity of Polystyrene Microspheres of Different Sizes to the Marine Medaka Oryzias melastigma (McClelland, 1839),” Water, vol. 14, no. 12, p. 1831, 2022. doi: 10.3390/w14121831

X. Qin, H. Lin, Y. Cao, R. S. S. Wu, K. P. Lai, and R. Y. C. Kong, “Embryo developmental toxicity in marine medaka (Oryzias melastigma) due to parental and embryonic 17α-ethinylestradiol exposure,” Sci. Total Environ., vol. 861, p. 160594, 2023. doi:10.1016/j.scitotenv.2022.160594.

M. Yamamoto, N. Kanazawa, M. Nomura, Y. Horie, and H. Okamura, “Bisphenol A alters sexual dimorphism and gene expression in marine medaka Oryzias melastigma,” Environ. Sci. Pollut. Res., pp. 1–10, 2022. doi: 10.1007/s11356-022-23863-3.

S.-Q. Qiu, G.-Y. Huang, X.-P. Li, D.-Q. Lei, C.-S. Wang, and G.-G. Ying, “Endocrine disruptor responses in the embryos of marine medaka (Oryzias melastigma) after exposure to aged plastic leachates,” Aquat. Toxicol., vol. 261, p. 106635, 2023. doi: 10.1016/j.aquatox.2023.106635.

P. Tanabe et al., “Relationships between isomeric metabolism and regioselective toxicity of hydroxychrysenes in embryos of Japanese medaka (Oryzias latipes),” Environ. Sci. Technol., vol. 57, no. 1, pp. 539–548, 2022. doi: 10.1016/j.tet.2022.133144.

Z. Huang et al., “Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma),” Environ. Toxicol., vol. 38, no. 6, pp. 1445–1454, 2023. doi: 10.1002/tox.23779

B. Xia et al., “Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos,” J. Hazard. Mater., p. 127421, 2021. doi: 10.1016/j.jhazmat.2021.127421

N. Tam, R. Y. C. Kong, and K. P. Lai, “Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4’-OH-PCB 65,” Sci. Total Environ., vol. 874, p. 162401, 2023. doi: 10.1016/j.scitotenv.2023.162401.

L. Liu et al., “Medaka embryos as a model for metabolism of anabolic steroids,” Arch. Toxicol., pp. 1–12, 2022. doi:10.1007/s00204-022-03284-4.

C. Devoy, Y. Raza, M. Kleiner, P. D. Jones, J. A. Doering, and S. Wiseman, “The brominated flame retardant, 1, 2, 5, 6-tetrabromocyclooctane (TBCO), causes multigenerational effects on reproductive capacity of Japanese medaka (Oryzias latipes),” Chemosphere, vol. 313, p. 137561, 2023. doi:10.1016/j.chemosphere.2022.137561.

Y. Takehana et al., “Genome sequence of the euryhaline Javafish medaka, Oryzias javanicus: a small aquarium fish model for studies on adaptation to salinity,” G3 Genes, Genomes, Genet., vol. 10, no. 3, pp. 907–915, 2020. doi: 10.1534/g3.119.400725.

Y. Horie, N. Kanazawa, A. Suzuki, K. Yonekura, and T. Chiba, “Influences of Salinity and Organic Compounds on Embryo Development in Three Medaka Oryzias Congeners with Habitats Ranging from Freshwater to Marine,” Bull. Environ. Contam. Toxicol., vol. 103, no. 3, pp. 411–415, 2019. doi:10.1007/s00128-019-02649-3.

S.-E. Nam, M. Saravanan, and J.-S. Rhee, “Benzo [a] pyrene constrains embryo development via oxidative stress induction and modulates the transcriptional responses of molecular biomarkers in the marine medaka Oryzias javanicus,” J. Environ. Sci. Heal. Part A, vol. 55, no. 9, pp. 1050–1058,2020. doi:10.1080/10934529.2020.1767452.

J. N. Rodriguez, Z. J. Otémé, and S. Hem, “Comparative study of vitellogenesis of two African catfish species Chrysichthys nigrodigitatus (Claroteidae) and Heterobranchus 1ongifilis (Clariidae),” Aquat. Living Resour., vol. 8, no. 4, pp. 291–296, 1995. doi: 10.1051/alr:1995029.

J. H. S. Blaxter and G. Hempel, “The influence of egg size on herring larvae (Clupea harengus L.),” ICES J. Mar. Sci., vol. 28, no. 2, pp. 211–240, 1963. doi: 10.1093/icesjms/28.2.211.

B. M. Reyes-Mero, A. M. Santana-Piñeros, L. G. Muñoz-Chumo, Y. Cruz-Quintana, and E. Gisbert, “Yolk Absorption Rate and Mouth Development in Larvae of Dormitator latifrons (Perciformes: Eleotridae),” Fishes, vol. 7, no. 6, p. 375, 2022. doi: 10.3390/fishes7060375.

T. A. Heming and R. K. Buddington, “6 yolk absorption in embryonic and larval fishes,” in Fish physiology, vol. 11, Elsevier, 1988, pp. 407–446. doi: 10.1016/S1546-5098(08)60203-4.

J.-C. Chen et al., “Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma,” Mar. Pollut. Bull., vol. 158, p. 111349, 2020. doi:10.1016/j.marpolbul.2020.111349.

H. Wang et al., “Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma,” J. Hazard. Mater., vol. 453, p. 131361, 2023. doi: 10.1016/j.jhazmat.2023.131361.

Z. Zhang et al., “Hydrostatic pressure shock induced diploid/tetraploid mosaic in mandarin fish (Siniperca chuatsi), with the observation of embryo development and change in body spots,” Aquaculture, vol. 563, p. 738989, 2023. doi: 10.1016/j.aquaculture.2022.738989.

A. C. F. Alves, P. T. O. Saiki, R. da Silva Brito, P. S. Scalize, and T. L. Rocha, “How much are metals for next-generation clean technologies harmful to aquatic animal health? A study with cobalt and nickel effects in zebrafish (Danio rerio),” J. Hazard. Mater. Adv., vol. 8, p. 100160, 2022. doi: 10.1016/j.hazadv.2022.100160.

F. Jin et al., “Acute and Chronic Effects of Crude Oil Water-Accommodated Fractions on the Early Life Stages of Marine Medaka (Oryzias melastigma, McClelland, 1839),” Toxics, vol. 11, no. 3, p. 236, 2023. doi: 10.3390/toxics11030236.

D. Tannahill, G. M. W. Cook, and R. J. Keynes, “Axon guidance and somites,” Cell Tissue Res., vol. 290, pp. 275–283, 1997. doi:10.1007/s004410050932

B. Della Gaspera, L. Weill, and C. Chanoine, “Evolution of Somite Compartmentalization: A View From Xenopus,” Front. Cell Dev. Biol., p. 3571, 2022. doi: 10.3389/fcell.2021.790847

J. D. Manneken, M. V. P. Dauer, and P. D. Currie, “Dynamics of muscle growth and regeneration: Lessons from the teleost,” Exp. Cell Res., vol. 411, no. 2, p. 112991, 2022. doi:10.1016/j.yexcr.2021.112991.

M. B. Billah et al., “Assessment of the embryotoxic potential of contaminated sediments using fish embryotoxicity tests for the river Buriganga, Dhaka, Bangladesh,” Int. J. Aquat. Biol., vol. 10, no. 4, pp. 321–335, 2022. doi: 10.22034/ijab.v10i4.1290.

K. P. Pradhoshini et al., “Biological effects of ionizing radiation on aquatic biota-A critical review,” Environ. Toxicol. Pharmacol., p. 104091, 2023. doi: 10.1016/j.etap.2023.104091.

W.-Q. Wang, H.-H. Chen, W.-J. Zhao, K.-M. Fang, H.-J. Sun, and F.-Y. Zhu, “Ecotoxicological assessment of spent battery extract using zebrafish embryotoxicity test: A multi-biomarker approach,” Chemosphere, vol. 287, p. 132120, 2022. doi:10.1016/j.chemosphere.2021.132120.

B. K. Stepien, V. Pawolski, M.-C. Wagner, T. Kurth, M. H. H. Schmidt, and H.-H. Epperlein, “The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation,” Cells, vol. 12, no. 9, p. 1313, 2023. doi: 10.3390/cells12091313.

D. Hossainian et al., “Quantification of functional recovery in a larval zebrafish model of spinal cord injury,” J. Neurosci. Res., vol. 100, no. 11, pp. 2044–2054, 2022. doi: 10.1002/jnr.25118.

H. Park, G. Song, T. Hong, G. An, S. Park, and W. Lim, “Exposure to the herbicide fluridone induces cardiovascular toxicity in early developmental stages of zebrafish,” Sci. Total Environ., vol. 867, p. 161535, 2023. doi: 10.1016/j.scitotenv.2023.161535.

K. Kranert, M. Woźny, P. Podlasz, K. Wąsowicz, and P. Brzuzan, “MiR92b-3p synthetic analogue impairs zebrafish embryonic development, leading to ocular defects, decreased movement and hatching rate, and increased mortality,” J. Appl. Genet., vol. 64, no. 1, pp. 145–157, 2023. doi: 10.1007/s13353-022-00732-w.

Y. Ma et al., “Environmentally relevant concentrations of fipronil selectively disrupt venous vessel development in zebrafish embryos/larvae,” Chemosphere, vol. 335, p. 139146, 2023. doi:10.1016/j.chemosphere.2023.139146.

L. P. Leandro et al., “Permissible concentration of mancozeb in Brazilian drinking water elicits oxidative stress and bioenergetic impairments in embryonic zebrafish,” Environ. Pollut., vol. 333, p. 122013, 2023. doi: 10.1016/j.envpol.2023.122013.

S. Arrokhman, Y.-H. Luo, and P. Lin, “Additive cardiotoxicity of a bisphenol mixture in zebrafish embryos: The involvement of calcium channel and pump,” Ecotoxicol. Environ. Saf., vol. 263, p. 115225, 2023. doi: 10.1016/j.ecoenv.2023.115225.

B. Haridevamuthu et al., “Hydroxyl containing benzo [b] thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle,” Life Sci., vol. 298, p. 120507, 2022. doi: 10.1016/j.lfs.2022.120507.

W. Wilczynski et al., “Acute toxicity of organoarsenic chemical warfare agents to Danio rerio embryos,” Ecotoxicol. Environ. Saf., vol. 262, p. 115116, 2023. doi: 10.1016/j.ecoenv.2023.115116.

K. Anderson-Bain et al., “Apical and mechanistic effects of 6PPD-quinone on different life-stages of the fathead minnow (Pimephales promelas),” Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., vol. 271, p. 109697, 2023. doi:10.1016/j.cbpc.2023.109697.

J. Luan, S. Zhang, Y. Xu, L. Wen, and X. Feng, “Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid,” Ecotoxicol. Environ. Saf., vol. 258, p. 114994, 2023. doi: 10.1016/j.ecoenv.2023.114994.

M. Cantarella et al., “Green synthesis of photocatalytic TiO2/Ag nanoparticles for an efficient water remediation,” J. Photochem. Photobiol. A Chem., vol. 443, p. 114838, 2023. doi:10.1016/j.jphotochem.2023.114838.

X. Zhao, X. Huang, J. Shi, K. Zhu, and B. Shao, “Diazepam and its disinfection byproduct promote the early development of nervous system in zebrafish embryos,” Oxid. Med. Cell. Longev., vol. 2020, pp. 1–10, 2020. doi: 10.1155/2020/8878143.

K. Liu et al., “Exposure to manganese (II) chloride induces developmental toxicity, oxidative stress and inflammatory response in Marine medaka (Oryzias melastigma) embryos,” Aquat. Toxicol., p. 106622, 2023. doi: 10.1016/j.aquatox.2023.106622.

X.-P. Li et al., “Toxicity and Estrogenicity of Bisphenol TMC in Oryzias melastigma via In Vivo and In Silico Studies,” Environ. Sci. Technol., vol. 57, no. 8, pp. 3280–3290, 2023. doi:10.1021/acs.est.2c08009.

D. Madariaga-Mendoza, J. Marrugo-Negrete, and V. Atencio-García, “Effect of Inorganic Mercury on Semen Quality, Embryo and Larval Development of Bocachico Prochilodus magdalenae,” Fishes, vol. 8, no. 9, p. 445, 2023. doi: 10.3390/fishes8090445.

S. Naz et al., “A Comprehensive Review on Metallic Trace Elements Toxicity in Fishes and Potential Remedial Measures,” Water, vol. 15, no. 16, p. 3017, 2023. doi: 10.3390/w15163017.

P. Talukder, R. Ray, M. Sarkar, A. Das, and S. Chakraborty, “Adverse effects of mining pollutants on terrestrial and aquatic environment and its remediation,” Environ. Qual. Manag., 2023. doi:10.1002/tqem.22121.

A. E.-D. A. Bekhit, M. K. Ahmmed, B. Sicuro, S. Ghelichi, and A. Carne, “Fish roe products: European perspective,” in Fish Roe, Elsevier, 2022, pp. 311–341. doi: 10.1016/B978-0-12-819893-3.00012-6.

T. Iwamatsu, T. Muramatsu, and H. Kobayashi, “Oil droplets and yolk spheres during development of Medaka embryos,” Ichthyol. Res., vol. 55, no. 4, pp. 344–348, 2008. doi: 10.1007/s10228-008-0048-z.

J. Mu, J. Wang, F. Jin, X. Wang, and H. Hong, “Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma),” Mar. Pollut. Bull., vol. 85, no. 2, pp. 505–515, 2014. doi: 10.1016/j.marpolbul.2014.01.040.

X. Qiu, S. Kim, I. J. Kang, T. Hano, Y. Shimasaki, and Y. Oshima, “Combined toxicities of tributyltin and polychlorinated biphenyls on the development and hatching of Japanese medaka (Oryzias latipes) embryos via in ovo nanoinjection,” Chemosphere, vol. 225, pp. 927–934, 2019. doi: 10.1016/j.chemosphere.2019.03.104.

T. Iwamatsu, “Stages of normal development in the medaka Oryzias latipes.,” Mech. Dev., vol. 121, no. 7–8, pp. 605–618, 2004, DOI: 10.1016/j.mod.2004.03.012.

I. V Kuzmina, “The yolk sac as the main organ in the early stages of animal embryonic development,” Front. Physiol., vol. 14, p. 1185286, 2023. doi: 10.3389/fphys.2023.1185286.

M. Shibata, N. Makihara, and A. Iwasawa, “The Yolk Sac’s Essential Role in Embryonic Development,” Rev. Agric. Sci., vol. 11, pp. 243–258, 2023. doi: 10.7831/ras.11.0_243.

Y. Meng and N. Qiu, “Egg and Embryonic Development,” in Handbook of Egg Science and Technology, CRC Press, 2023, pp. 737–744. doi: 10.1201/9781003254430.

H. Liu et al., “Metabolomic analysis of the egg yolk during the embryonic development of broilers,” Poult. Sci., vol. 100, no. 4, p. 101014, 2021. doi: 10.1016/j.psj.2021.01.036.

P. W. A. Sucipto, K. Yaqin, M. A. Bakri, S. Supratno, A. Firasanti, and E. A. Z. Hamidi, “Statistical and Spectral Feature Extraction of Oryzias celebensis Heart Rate,” in 2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2022, pp. 1–4. doi: 10.1109/TSSA56819.2022.10063878.

J. Horng, Y.-S. Lee, and L.-Y. Lin, “Exposure to silver impairs the osmoregulatory capability of euryhaline medaka (Oryzias latipes) subjected to salinity changes,” Aquat. Toxicol., vol. 260, p. 106592, 2023. doi: 10.1016/j.aquatox.2023.106592.

Y. Yang et al., “Effects of lipophilic phycotoxin okadaic acid on the early development and transcriptional expression of marine medaka Oryzias melastigma,” Aquat. Toxicol., vol. 260, p. 106576, 2023. doi:10.1016/j.aquatox.2023.106576.

Y. Chen et al., “Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma),” Chemosphere, vol. 308, p. 136424, 2022. doi:10.1016/j.chemosphere.2022.136424.

J. Gierten et al., “Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020. doi: 10.1038/s41598-020-58563-w.

R. F. Wang et al., “Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae,” Chemosphere, vol. 247, 2020, doi: 10.1016/j.chemosphere.2020.125923. doi:10.1016/j.chemosphere.2020.125923.

A. R. Lopes, J. S. Moraes, and C. de M. G. Martins, “Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them,” Aquat. Toxicol., p. 106281, 2022. doi: 10.1016/j.aquatox.2022.106281.

K. L. Teather, J. Boswell, and M. A. Gray, “Early life-history parameters of Japanese medaka (Oryzias latipes),” Copeia, vol. 2000, no. 3, pp. 813–818, 2000. doi:10.1643/0045-8511(2000)000[0813:ELHPOJ]2.0.CO;2.

F. Piferrer, “Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems,” Philos. Trans. R. Soc. B, vol. 376, no. 1832, p. 20200110, 2021. doi:10.1098/rstb.2020.0110.

V. Chapelle and F. Silvestre, “Population epigenetics: The extent of DNA methylation variation in wild animal populations,” Epigenomes, vol. 6, no. 4, p. 31, 2022. doi: 10.3390/epigenomes6040031.

S. Samreen et al., “Environmental relevant herbicide prometryn induces developmental toxicity in the early life stages of marine medaka (Oryzias melastigma) and its potential mechanism,” Aquat. Toxicol., p. 106079, 2022. doi: 10.1016/j.aquatox.2022.106079.

B. Xia et al., “Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos,” J. Hazard. Mater., vol. 424, p. 127421, 2022. doi:10.1016/j.jhazmat.2021.127421.

T. Pinceel, F. Buschke, A. Geerts, J. Vanoverbeke, L. Brendonck, and B. Vanschoenwinkel, “An empirical confirmation of diversified bet-hedging as a survival strategy in unpredictably varying environments,” Ecology, vol. 102, no. 11, p. e03496, 2021. doi: 10.1002/ecy.3496.

W. W. Burggren and J. F. Mendez-Sanchez, “‘Bet hedging’ against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation,” Front. Physiol., vol. 14, 2023. doi:10.3389/fphys.2023.1245875.

T. R. Haaland, J. Wright, and I. I. Ratikainen, “Individual reversible plasticity as a genotype‐level bet‐hedging strategy,” J. Evol. Biol., vol. 34, no. 7, pp. 1022–1033, 2021. doi: 10.1111/jeb.13788.

A. Wuth and S. Mishra, “Environmental unpredictability and bet-hedging,” Encycl. Evol. Psychol. Sci., pp. 2377–2379, 2021. doi:10.1007/978-3-319-19650-3_3695.

J. A. Draghi, “Bet‐hedging via dispersal aids the evolution of plastic responses to unreliable cues,” J. Evol. Biol., 2023. doi:10.1111/jeb.14182

N. S. Kashef, D. M. Stafford, S. M. Sogard, J. C. Garza, J. C. Field, and E. A. Gilbert‐Horvath, “Multiple‐brooding rockfishes (Sebastes spp.) can utilize stored sperm from individual sires to fertilize consecutive broods,” J. Fish Biol., 2023. doi: 10.1111/jfb.15341.

M. Polačik et al., “Embryonic development of natural annual killifish populations of the genus Austrolebias: Evolutionary parallelism and the role of environment,” Freshw. Biol., vol. 68, no. 10, pp. 1726–1738, 2023. doi: 10.1111/fwb.14161.

A. Magierecka, B. Cooper, K. A. Sloman, and N. B. Metcalfe, “Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate,” Horm. Behav., vol. 154, p. 105396, 2023. doi:10.1016/j.yhbeh.2023.105396.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).