Modeling Flood Susceptible Areas Using Deep Learning Techniques with Random Subspace: A Case Study of the Mae Chan Basin in Thailand
How to cite (IJASEIT) :
UNDRR, “The human cost of disasters: an overview of the last 20 years (2000-2019),” 2020. [Online]. Available: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
National Disaster Reduction Center of China, “2020 Global Natural Disaster Assessment Report,” 2021. [Online]. Available: https://www.preventionweb.net/publication/2021-global-disaster-assessment-report
Y.-J. Chen, H.-J. Lin, J.-J. Liou, C.-T. Cheng, and Y.-M. Chen, “Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan,” Water (Basel), vol. 14, no. 2, 2022, doi:10.3390/w14020207.
NSO, “Statistics of flood in Thailand : 2009-2020,” 2021. [Online]. Available: http://statbbi.nso.go.th/staticreport/page/sector/th/21.aspx
HII, “The operations regarding data collection and analysis for the development of a data repository system for 25 river basins and a simulation model for flood and drought events.,” Hydro – Informatics Institute, 2012. [Online]. Available: https://tiwrm.hii.or.th/web/attachments/25basins/02-khong.pdf.
M. Ahmadlou et al., “Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks,” J Flood Risk Manag, vol. 14, no. 1, p. e12683, 2021, doi: 10.1111/jfr3.12683.
Y. Berkat and H. Fitriana, “Flood Prone Analysis Using GIS and Remote Sensing Data; Case Study in Semarang, Central Java,” IOP Conf Ser Earth Environ Sci, vol. 874, p. 12004, Dec. 2021, doi:10.1088/1755-1315/874/1/012004.
A. R. M Amen et al., “Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq,” Remote Sens (Basel), vol. 15, no. 4, 2023, doi:10.3390/rs15041102.
P. Hansana, X. Guo, S. Zhang, X. Kang, and S. Li, “Flood Analysis Using Multi-Scale Remote Sensing Observations in Laos,” Remote Sens (Basel), vol. 15, no. 12, 2023, doi: 10.3390/rs15123166.
H. S. Munawar, A. W. A. Hammad, and S. T. Waller, “Remote Sensing Methods for Flood Prediction: A Review,” Sensors, vol. 22, no. 3, p. 960, Jan. 2022, doi: 10.3390/s22030960.
M. M. Msabi and M. Makonyo, “Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania,” Remote Sens Appl, vol. 21, p. 100445, 2021, doi:10.1016/j.rsase.2020.100445.
L. S. Bruno, T. S. Mattos, P. T. S. Oliveira, A. Almagro, and D. B. B. Rodrigues, “Hydrological and Hydraulic Modeling Applied to Flash Flood Events in a Small Urban Stream,” Hydrology, vol. 9, no. 12, 2022, doi: 10.3390/hydrology9120223.
V. Kumar, K. V. Sharma, T. Caloiero, D. J. Mehta, and K. Singh, “Comprehensive Overview of Flood Modeling Approaches: A Review of Recent Advances,” Hydrology, vol. 10, no. 7, 2023, doi:10.3390/hydrology10070141.
P. Jimeno-Sáez, R. Martínez-España, J. Casalí, J. Pérez-Sánchez, and J. Senent-Aparicio, “A comparison of performance of SWAT and machine learning models for predicting sediment load in a forested Basin, Northern Spain,” Catena (Amst), vol. 212, p. 105953, 2022, doi:10.1016/j.catena.2021.105953.
P. Kumar et al., “Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations,” Science of The Total Environment, vol. 784, p. 147058, 2021, doi:10.1016/j.scitotenv.2021.147058.
R. Costache and D. Tien Bui, “Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania,” Science of The Total Environment, vol. 691, pp. 1098–1118, 2019, doi:10.1016/j.scitotenv.2019.07.197.
S. V. Razavi Termeh, A. Kornejady, H. R. Pourghasemi, and S. Keesstra, “Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms,” Science of The Total Environment, vol. 615, pp. 438–451, 2018, doi:10.1016/j.scitotenv.2017.09.262.
T. K. Saha et al., “How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region,” J Environ Manage, vol. 297, p. 113344, 2021, doi:10.1016/j.jenvman.2021.113344.
B. T. Pham et al., “Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?,” J Hydrol (Amst), vol. 592, p. 125615, 2021, doi:10.1016/j.jhydrol.2020.125615.
M. Ganjirad and M. R. Delavar, “Flood Risk Mapping Using Random Forest and Support Vector Machine,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. X-4/W1-2022, pp. 201–208, 2023, doi: 10.5194/isprs-annals-X-4-W1-2022-201-2023.
A. Salvati et al., “Flood susceptibility mapping using support vector regression and hyper-parameter optimization,” J Flood Risk Manag, vol. 16, no. 4, p. e12920, 2023, doi: 10.1111/jfr3.12920.
G. Wang, J. Yang, Y. Hu, J. Li, and Z. Yin, “Application of a novel artificial neural network model in flood forecasting,” Environ Monit Assess, vol. 194, Dec. 2022, doi: 10.1007/s10661-022-09752-9.
M. Ahmadlou, Y. Ebrahimian Ghajari, and M. Karimi, “Enhanced classification and regression tree (CART) by genetic algorithm (GA) and grid search (GS) for flood susceptibility mapping and assessment,” Geocarto Int, vol. 37, no. 26, pp. 13638–13657, Dec. 2022, doi:10.1080/10106049.2022.2082550.
S. Shadkani, A. Abbaspour, S. Samadianfard, S. Hashemi, A. Mosavi, and S. S. Band, “Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: The case study of the Mississippi River, U.S,” International Journal of Sediment Research, vol. 36, no. 4, pp. 512–523, 2021, doi: 10.1016/j.ijsrc.2020.10.001.
F. M. Aswad, A. N. Kareem, A. M. Khudhur, B. A. Khalaf, and S. A. Mostafa, “Tree-based machine learning algorithms in the Internet of Things environment for multivariate flood status prediction,” vol. 31, no. 1, pp. 1–14, 2022, doi: 10.1515/jisys-2021-0179.
A. Habibi, M. Delavar, M. Sadeghian, and B. Nazari, “Flood Susceptibility Mapping and Assessment Using Regularized Random Forest and Naïve Bayes Algorithms,” ISPRS Annals of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. X-4/W1-2022, pp. 241–248, Dec. 2023, doi:10.5194/isprs-annals-X-4-W1-2022-241-2023.
H. Tang, H. Xu, X. Rui, X. Heng, and Y. Song, “The Identification and Analysis of the Centers of Geographical Public Opinions in Flood Disasters Based on Improved Naïve Bayes Network,” Int J Environ Res Public Health, vol. 19, no. 17, 2022, doi:10.3390/ijerph191710809.
C. Luu et al., “Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam,” Natural Hazards, vol. 108, Dec. 2021, doi: 10.1007/s11069-021-04821-7.
A. R. M. Towfiqul Islam et al., “Flood susceptibility modelling using advanced ensemble machine learning models,” Geoscience Frontiers, vol. 12, no. 3, p. 101075, 2021, doi: 10.1016/j.gsf.2020.09.006.
W. Chen et al., “Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles,” J Hydrol (Amst), vol. 575, pp. 864–873, 2019, doi: 10.1016/j.jhydrol.2019.05.089.
A. Shirzadi et al., “A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping,” Eng Appl Artif Intell, vol. 96, p. 103971, 2020, doi: 10.1016/j.engappai.2020.103971.
M. Rahman et al., “Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria Decision Analysis,” Earth Systems and Environment, vol. 3, no. 3, pp. 585–601, 2019, doi:10.1007/s41748-019-00123-y.
D. Tien Bui et al., “A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area,” Science of The Total Environment, vol. 701, p. 134413, 2020, doi: 10.1016/j.scitotenv.2019.134413.
M. Diakakis, G. Deligiannakis, A. Pallikarakis, and M. Skordoulis, “Factors controlling the spatial distribution of flash flooding in the complex environment of a metropolitan urban area. The case of Athens 2013 flash flood event,” International Journal of Disaster Risk Reduction, vol. 18, pp. 171–180, 2016, doi:10.1016/j.ijdrr.2016.06.010.
S. Huang, J. Xia, G. Wang, and J. Lei, “The impact of flood regime on river floodplain vegetation coverage: Insights from a 30-year Landsat record,” J Hydrol (Amst), vol. 626, p. 130355, 2023, doi:10.1016/j.jhydrol.2023.130355.
S. Sugianto, A. Deli, E. Miswar, M. Rusdi, and M. Irham, “The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya,” Land (Basel), vol. 11, no. 8, 2022, doi:10.3390/land11081271.
M. Panahi et al., “Deep learning neural networks for spatially explicit prediction of flash flood probability,” Geoscience Frontiers, vol. 12, no. 3, p. 101076, 2021, doi: 10.1016/j.gsf.2020.09.007.
A. Hamlat, C. B. Kadri, A. Guidoum, and H. Bekkaye, “Flood hazard areas assessment at a regional scale in M’zi wadi basin, Algeria,” Journal of African Earth Sciences, vol. 182, p. 104281, 2021, doi:10.1016/j.jafrearsci.2021.104281.
M. Rahman et al., “Flooding and its relationship with land cover change, population growth, and road density,” Geoscience Frontiers, vol. 12, no. 6, p. 101224, Nov. 2021, doi:10.1016/J.GSF.2021.101224.
M. A. Baig et al., “Regression analysis of hydro-meteorological variables for climate change prediction: A case study of Chitral Basin, Hindukush region,” Science of The Total Environment, vol. 793, p. 148595, 2021, doi: 10.1016/j.scitotenv.2021.148595.
K. I. Sundus, B. H. Hammo, M. B. Al-Zoubi, and A. Al-Omari, “Solving the multicollinearity problem to improve the stability of machine learning algorithms applied to a fully annotated breast cancer dataset,” Inform Med Unlocked, vol. 33, p. 101088, 2022, doi:10.1016/j.imu.2022.101088.
J. Y.-L. Chan et al., “Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review,” Mathematics, vol. 10, no. 8, 2022, doi: 10.3390/math10081283.
H. Farhadi, A. Esmaeily, and M. Najafzadeh, “Flood monitoring by integration of Remote Sensing technique and Multi-Criteria Decision Making method,” Comput Geosci, vol. 160, p. 105045, Mar. 2022, doi:10.1016/J.CAGEO.2022.105045.
G. Seeja, A. S. A. Doss, and V. B. Hency, “A Novel Approach for Disaster Victim Detection Under Debris Environments Using Decision Tree Algorithms With Deep Learning Features,” IEEE Access, vol. 11, pp. 54760–54772, 2023, doi:10.1109/access.2023.3281461.
H.-M. Lyu and Z.-Y. Yin, “Flood susceptibility prediction using tree-based machine learning models in the GBA,” Sustain Cities Soc, vol. 97, p. 104744, 2023, doi: 10.1016/j.scs.2023.104744.
M. Rasheed, SuhaShihab, O. Alabdali, and H. H. Hassan, “Parameters Extraction of a Single-Diode Model of Photovoltaic Cell Using False Position Iterative Method,” J Phys Conf Ser, vol. 1879, no. 3, p. 032113, 2021, doi: 10.1088/1742-6596/1879/3/032113.
M. Motta, M. de Castro Neto, and P. Sarmento, “A mixed approach for urban flood prediction using Machine Learning and GIS,” International Journal of Disaster Risk Reduction, vol. 56, p. 102154, 2021, doi: 10.1016/j.ijdrr.2021.102154.
M. Rasheed, O. Y. Mohammed, S. Shihab, and A. Al-Adili, “Explicit Numerical Model of Solar Cells to Determine Current and Voltage,” J Phys Conf Ser, vol. 1795, no. 1, p. 012043, 2021, doi:10.1088/1742-6596/1795/1/012043.
R. Jalal, S. Shihab, M. A. Alhadi, and M. Rasheed, “Spectral Numerical Algorithm for Solving Optimal Control Using Boubaker-Turki Operational Matrices,” J Phys Conf Ser, vol. 1660, no. 1, p. 012090, 2020, doi: 10.1088/1742-6596/1660/1/012090.
M. Rasheed, O. Alabdali, and S. Shihab, “A New Technique for Solar Cell Parameters Estimation of The Single-Diode Model,” J Phys Conf Ser, vol. 1879, no. 3, p. 032120, 2021, doi: 10.1088/1742-6596/1879/3/032120.
A. Lovakov and E. R. Agadullina, “Empirically derived guidelines for effect size interpretation in social psychology,” Eur J Soc Psychol, vol. 51, no. 3, pp. 485–504, 2021, doi: 10.1002/ejsp.2752.
M. Enneffatia, M. Rasheed, B. Louatia, K. Guidaraa, S. Shihab, and R. Barillé, “Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25Na0.75CdVO4 compound,” J Phys Conf Ser, vol. 1795, no. 1, p. 012050, 2021, doi:10.1088/1742-6596/1795/1/012050.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).