Chemical Characteristics of Chicken Litter Waste in Closed-House System

Teguh Budi Prasetyo (1), Amsar Maulana (2), Moli Monikasari (3), Alfino Andestopano (4), Irwan Darfis (5), Ikram Pratama (6), Ridho Ryswaldi (7), Herviyanti Herviyanti (8)
(1) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(2) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(3) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(4) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(5) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(6) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
(7) Department of Management, Economic and Business Faculty, Andalas University, Limau Manis, Padang, Indonesia
(8) Department of Soil Science and Land Resources, Agriculture Faculty, Andalas University, Limau Manis, Padang, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Prasetyo, Teguh Budi, et al. “Chemical Characteristics of Chicken Litter Waste in Closed-House System”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 3, June 2024, pp. 1026-34, doi:10.18517/ijaseit.14.3.19700.
Waste from the broiler and layer farming industry with a closed-house system continues to increase without optimizing waste utilization and harms the environment. Potential chicken litter waste from the chicken farming industry in West Sumatra is 5 tons per harvest (40 days) from a chicken livestock capacity of 100,000 chickens. This research aims to assess the potential and utilization and study the biochemistry of chicken manure waste in closed-house systems as biosorbents and fertilizers through amelioration technology. Closed-house chicken coop bedding waste (CHCCW) in the form of sawdust has functional groups such as carboxyl that can absorb cations because it can increase the negative charge in the soil so that it can be utilized by plants. In addition, the CHCCW can also absorb cations (pollutants). Chemical characteristics from the analysis results prove the ability of the CHCCW. Chicken litter waste has chemical characteristics that have the potential as a biosorbent and are valid as fertilizer, which has a proximate composition (moisture 4.26%; volatile matter 74.20%; ash 6.78% and fixed carbon 14.76%); pH (pH H2O 8.37 and pH PZC 7.37); electrical conductivity (EC) >2 dS m-1 and cation exchange capacity (CEC) 182.67 Cmol(+)kg-1. The nutrient composition of chicken manure waste in closed-house systems has macro nutrients (6.88% C; 0.06% N; 5.89% P; 34.89% K; 36.28% Ca; 5.76% S) and micronutrients (2.49% Fe; 1.39% Mn; 1.22% Zn; 1.01% Cu; and 5.15% Cl). Chicken manure waste in closed-house systems also has functional groups such as O-H, N-H, C-H, C-OH, C=C, C=O, C-O-C, Si-O, and O-CH3, which play an active role in the absorption of pollutants and nutrients in the soil.

L. B. Safdar M. John Foulkes, Friedrich H. Kleiner, Iain R. Searle, Rahul A. Bhosale, Ian D. Fisk and Scott A. Boden, “Challenges facing sustainable protein production: Opportunities for cereals,” Plant Communications, vol. 4, no. 6. Cell Press, Nov. 13, 2023. doi:10.1016/j.xplc.2023.100716.

P. R. Rout , Daya Shankar Pandey, Macsen Haynes-Parry, Caitlin Briggs, Helmer Luís Cachicolo Manuel, Reddicherla Umapathi, Sanjay Mukherjee, Sagarika Panigrahi, Mukesh Goel, “Sustainable Valorisation of Animal Manures via Thermochemical Conversion Technologies: An Inclusive Review on Recent Trends,” Waste Biomass Valorization, vol. 14, no. 2, pp. 553–582, Feb. 2023, doi: 10.1007/s12649-022-01916-5.

G. Gržinić, A. Piotrowicz-Cieślak, A. Klimkowicz-Pawlas, Rafał L. Górny, Anna Ławniczek-Wałczyk, L. Piechowicz, Ewa Olkowska, Marta Potrykus, Maciej Tankiewicz, Magdalena Krupka, Grzegorz Siebielec, Lidia Wolska, “Intensive poultry farming: A review of the impact on the environment and human health,” Science of the Total Environment, vol. 858. Elsevier B.V., Feb. 01, 2023. doi:10.1016/j.scitotenv.2022.160014.

H. I. Susanti, “Study of Closed-House Systems in Broiler Production,” JIA (Jurnal Ilmiah Agribisnis) : Jurnal Agribisnis dan Ilmu Sosial Ekonomi Pertanian, vol. 8, no. 3, pp. 214–219, Aug. 2023, doi:10.37149/jia.v8i3.188.

T. L. Gladding, C. A. Rolph, C. L. Gwyther, R. Kinnersley, K. Walsh, and S. Tyrrel, “Concentration and composition of bioaerosol emissions from intensive farms: Pig and poultry livestock,” J Environ Manage, vol. 272, Oct. 2020, doi: 10.1016/j.jenvman.2020.111052.

I. Syazaidah, M. S. Abu Bakar, M. S. Reza, and A. K. Azad, “Ex-situ catalytic pyrolysis of chicken litter for bio-oil production: Experiment and characterization,” J Environ Manage, vol. 297, Nov. 2021, doi:10.1016/j.jenvman.2021.113407.

K. Anderson, P. A. Moore, J. Martin, and A. J. Ashworth, “Evaluation of a novel poultry litter amendment on greenhouse gas emissions,” Atmosphere (Basel), vol. 12, no. 5, May 2021, doi:10.3390/atmos12050563.

L. Zhang, J. Ren, and W. Bai, “A Review of Poultry Waste-to-Wealth: Technological Progress, Modeling and Simulation Studies, and Economic- Environmental and Social Sustainability,” Sustainability (Switzerland), vol. 15, no. 7. MDPI, Apr. 01, 2023. doi:10.3390/su15075620.

M. D. Manogaran, R. Shamsuddin, M. H. Mohd Yusoff, M. Lay, and A. A. Siyal, “A review on treatment processes of chicken manure,” Cleaner and Circular Bioeconomy, vol. 2, p. 100013, Aug. 2022, doi:10.1016/j.clcb.2022.100013.

S. Majeed M. Ali Jaaf, Y. Li, E. Günal, H. Ali El Enshasy, S. H. Salmen, and A. Sürücü, “The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil,” Saudi J Biol Sci, vol. 29, no. 4, pp. 2998–3005, Apr. 2022, doi: 10.1016/j.sjbs.2022.01.037.

J. R. Baishnab, A. Mahbub, and M. Y. Miah, “Performance of broiler using rice husk and sawdust as litter materials during summer,” Asian-Australasian Journal of Bioscience and Biotechnology, vol. 8, no. 2, pp. 17–22, May 2023, doi: 10.3329/aajbb.v8i2.65667.

J. Subirats, R. Murray, X. Yin, T. Zhang, and E. Topp, “Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables,” Science of the Total Environment, vol. 801, Dec. 2021, doi: 10.1016/j.scitotenv.2021.149718.

L. R. de Macedo, Eduardo Fontes Araújo, Roberto Fontes Araújo, João Carlos Cardoso Galvão, Paulo Roberto Cecon, Leandro Roberto de Macedo, Silvane de Almeida Campos, “Physical and physiological qualities and productivity of corn seeds fertilized with poultry waste,” Ciencia Rural, vol. 53, no. 1, 2023, doi: 10.1590/0103-8478cr20210515.

C. Lin, N. K. Cheruiyot, X. T. Bui, and H. H. Ngo, “Composting and its application in bioremediation of organic contaminants,” Bioengineered, vol. 13, no. 1. Taylor and Francis Ltd., pp. 1073–1089, 2022. doi: 10.1080/21655979.2021.2017624.

C. W. Kamau Richard van Duijnen, Christoph A. O. Schmid, Helga E. Balàzs, Julien Roy, Matthias Rillig, Peter Schröder, Viviane Radl, Vicky M. Temperton & Michael Schloter, “Impact of high carbon amendments and pre-crops on soil bacterial communities”, Biol Fertil Soils, 57:305–317, 2021, doi: 10.1007/s00374-020-01526-0/Published.

A. A. Rufaedah, L. Amalia, and R. Rahayu, “Wood Waste Management: Sawdust as a Planting Media during the COVID-19 Pandemic at Sindangmekar Village, Dukupuntang Subdistrict, Cirebon District”, vol. 5, no. 2, pp. 256-260, 2021, doi:10.33086/cdj.v5i2.

Z. Z. Chowdhury, M. Ziaul Karim, M. A. Ashraf, and K. Khalid, “Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust,” Bioresources, vol. 11, no. 2, pp. 3356–3372, May 2016, doi: 10.15376/biores.11.2.3356-3372.

E. Meez, A. Rahdar, and G. Z. Kyzas, “Sawdust for the removal of heavy metals from water: Α review,” Molecules, vol. 26, no. 14. MDPI AG, Jul. 02, 2021. doi: 10.3390/molecules26144318.

J. R. Plumblee Lawrence, D. Cudnik, and A. Oladeinde, “Bacterial Detection and Recovery From Poultry Litter,” Front Microbiol, vol. 12, Jan. 2022, doi: 10.3389/fmicb.2021.803150.

I. Syazaidah, M. S. Abu Bakar, M. S. Reza, and A. K. Azad, “Ex-situ catalytic pyrolysis of chicken litter for bio-oil production: Experiment and characterization,” J Environ Manage, vol. 297, Nov. 2021, doi:10.1016/j.jenvman.2021.113407.

G. Raimondi Carmelo Maucieri, Andrea Squartini, Piergiorgio Stevanato, Massimo Tolomio, Arianna Toffanin, Maurizio Borin., “Soil indicators for comparing medium-term organic and conventional agricultural systems,” European Journal of Agronomy, vol. 142, Jan. 2023, doi: 10.1016/j.eja.2022.126669.

X. Feng, H. Zhang, and P. Yu, “X-ray fluorescence application in food, feed, and agricultural science: a critical review,” Critical Reviews in Food Science and Nutrition, vol. 61, no. 14. Taylor and Francis Ltd., pp. 2340–2350, 2021. doi: 10.1080/10408398.2020.1776677.

F. Batool, K. Islam, C. Cakiroglu, and A. Shahriar, “Effectiveness of wood waste sawdust to produce medium- to low-strength concrete materials,” Journal of Building Engineering, vol. 44, Dec. 2021, doi: 10.1016/j.jobe.2021.103237.

A. A. Enders, N. M. North, C. M. Fensore, J. Velez-Alvarez, and H. C. Allen, “Functional Group Identification for FTIR Spectra Using Image-Based Machine Learning Models,” Anal Chem, vol. 93, no. 28, pp. 9711–9718, Jul. 2021, doi: 10.1021/acs.analchem.1c00867.

C. Qiu, L. Jiang, Y. Gao, and L. Sheng, “Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review,” Materials and Design, vol. 230. Elsevier Ltd, Jun. 01, 2023. doi:10.1016/j.matdes.2023.111952.

M. O. Fajobi, O. A. Lasode, A. A. Adeleke, P. P. Ikubanni, and A. O. Balogun, “Investigation of physicochemical characteristics of selected lignocellulose biomass,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi:10.1038/s41598-022-07061-2.

A. J. Eugene, S. S. Xia, and M. I. Guzman, “Aqueous Photochemistry of Glyoxylic Acid,” Journal of Physical Chemistry A, vol. 120, no. 21, pp. 3817–3826, Jun. 2016, doi: 10.1021/acs.jpca.6b00225.

P. Kucharski, B. Białecka, A. Śliwińska, and A. Pieprzyca, “Evaluation of specific capacity of poultry litter in heavy metal sorption,” Water Air Soil Pollut, vol. 232, no. 2, Feb. 2021, doi:10.1007/s11270-021-04984-w.

Dan Yuan, Haijing Yuan, Xiaodong He, Huixian Hu, Shuping Qin, Tim Clough, Nicole Wrage-Mönnig, Jiafa Luo, Xinhua He, Man Chen, Shungui Zhou, “Identification and verification of key functional groups of biochar influencing soil N2O emission”, Biology and Fertility of Soils, 57:447–456, 2021, doi: 10.1007/s00374-021-01541-9.

N. Merlin, B. A. Nogueira, V. A. De Lima, and L. M. Dos Santos, “Application of fourier transform infrared spectroscopy, chemical and chemometrics analyses to the characterization of agro-industrial waste,” Quim Nova, vol. 37, no. 10, pp. 1584–1588, 2014, doi:10.5935/0100-4042.20140259.

P. Azhagapillai, A. Al Shoaibi, and S. Chandrasekar, “Surface functionalization methodologies on activated carbons and their benzene adsorption,” Carbon Letters, vol. 31, no. 3, pp. 419–426, Jun. 2021, doi: 10.1007/s42823-020-00170-w.

A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to read and interpret ftir spectroscope of organic material,” Indonesian Journal of Science and Technology, vol. 4, no. 1, pp. 97–118, 2019, doi:10.17509/ijost.v4i1.15806.

H. Gogoi, T. Leiviskä, E. Heiderscheidt, H. Postila, and J. Tanskanen, “Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents,” J Environ Manage, vol. 209, pp. 316–327, Mar. 2018, doi: 10.1016/j.jenvman.2017.12.019.

A. Fahimi Fabjola Bilo a, Ahmad Assi, Rogerta Dalipi, Stefania Federici, Alexandra Guedes, Bruno Valentim c, Hayati Olgun, Guozhu Ye, Barbara Bialecka, Laura Fiameni, Laura Borgese, Michel Cathelineau, Marie-Christine Boiron, Georgeta Predeanu, Elza Bontempi, “Poultry litter ash characterisation and recovery,” Waste Management, vol. 111, pp. 10–21, Jun. 2020, doi:10.1016/j.wasman.2020.05.010.

S. Pandey, “Wood waste utilization and associated product development from under-utilized low-quality wood and its prospects in Nepal,” SN Applied Sciences, vol. 4, no. 6. Springer Nature, Jun. 01, 2022. doi: 10.1007/s42452-022-05061-5.

R. O. Sidi, M. Ben, Z. Rais, M. Taleb, and M. Asri, “Sawdust in the treatment of heavy metals-contaminated wastewater,” 2017. [Online]. Available: https://www.researchgate.net/publication/321680452

X. Chen, R. Xu, Y. Xu, H. Hu, S. Pan, and H. Pan, “Natural adsorbent based on sawdust for removing impurities in waste lubricants,” J Hazard Mater, vol. 350, pp. 38–45, May 2018, doi:10.1016/j.jhazmat.2018.01.057.

K. A. Adegoke O. O. Adesina, Omolabake Abiodun Okon-Akan, Oyeladun Rhoda Adegoke, A. Biodun Olabintan, Oluwaseyi Aderemi Ajala, H. Olagoke, Nobanathi Wendy Maxakato, Olugbenga Solomon Bello., “Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications,” Current Research in Green and Sustainable Chemistry, vol. 5. Elsevier B.V., Jan. 01, 2022. doi: 10.1016/j.crgsc.2022.100274.

F. Di Gregorio, D. Santoro, and U. Arena, “The effect of ash composition on gasification of poultry wastes in a fluidized bed reactor,” Waste Management and Research, vol. 32, no. 4, pp. 323–330, 2014, doi: 10.1177/0734242X14525821.

M. Kosmulski, “The pH dependent surface charging and points of zero charge. IX. Update,” Adv Colloid Interface Sci, vol. 296, Oct. 2021, doi: 10.1016/j.cis.2021.102519.

H. Herviyanti Amsar Maulana, Mimien Harianti, Arestha Leo Lita, T. Budi Prasetyo, Pitri Juwita, Reza Tri Kurnianto, Syafrimen Yasin., “Effect of glyphosate contamination on surface charge change and nutrients of degraded Inceptisols ameliorated with sub-bituminous coal,” Journal of Degraded and Mining Lands Management, vol. 11, no. 2, pp. 5135–5145, 2024, doi: 10.15243/jdmlm.2024.112.5135.

J. Holatko, T. Hammerschmiedt, Jiri Kucerik, Tivadar Baltazar, Maja Radziemska, Zdenek Havlicek, Antonin Kintl, I. Jaskulska, Ondrej Malicek, Martin Brtnicky, “Soil Properties and Maize Yield Improvement with Biochar-Enriched Poultry Litter-Based Fertilizer,” Materials, vol. 15, no. 24, Dec. 2022, doi: 10.3390/ma15249003.

H. Weldekidan, Vladimir Strezov, Jing He, R. Kumar, S. Asumadu-Sarkodie, Israel N. Y. Doyi, Sayka Jahan, Tao Kan, Graham Town., “Energy Conversion Efficiency of Pyrolysis of Chicken Litter and Rice Husk Biomass,” Energy and Fuels, vol. 33, no. 7, pp. 6509–6514, Jul. 2019, doi: 10.1021/acs.energyfuels.9b01264.

J. C. Joardar, B. Mondal, and S. Sikder, “Comparative study of poultry litter and poultry litter biochar application in the soil for plant growth,” SN Appl Sci, vol. 2, no. 11, Nov. 2020, doi: 10.1007/s42452-020-03596-z.

H. Chen, Sanjeev Kumar Awasthia, Tao Liua, Yumin Duana, Xiuna Rena, Z. Zhanga, Ashok Pandey, M. K. Awasthi., “Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting,” J Hazard Mater, vol. 389, May 2020, doi:10.1016/j.jhazmat.2019.121908.

A. J. Ashworth, J. P. Chastain, and P. A. Moore, “Nutrient Characteristics of Poultry Manure and Litter,” in Animal Manure: Production, Characteristics, Environmental Concerns, and Management, wiley, 2020, pp. 63–87. doi: 10.2134/asaspecpub67.c5.

M. Kyakuwaire, G. Olupot, A. Amoding, P. Nkedi-Kizza, and T. A. Basamba, “How safe is chicken litter for land application as an organic fertilizer? A review,” Int J Environ Res Public Health, vol. 16, no. 19, 2019, doi: 10.3390/ijerph16193521.

P. Duan, Ruitong Fu, Andrew T. Nottingham, Luiz A. Domeignoz-Horta, Xinyi Yang, Hu Du1, Kelin Wang, Dejun Li, “Tree species diversity increases soil microbial carbon use efficiency in a subtropical forest,” Glob Chang Biol, vol. 29, no. 24, pp. 7131–7144, Dec. 2023, doi: 10.1111/gcb.16971.

N. Maikol, A. O. Haruna, A. Maru, A. Asap, and S. Medin, “Utilization of urea and chicken litter biochar to improve rice production,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-89332-y.

E. M. Pachón Gómez, R. E. Domínguez, D´ebora A. L´opez, Jhoan F. T´ellez, Marcos D. Marino, Natalia Almada, Juan M. Gange, E. Laura Moyano., “Chicken litter: A waste or a source of chemicals? Fast pyrolysis and hydrothermal conversion as alternatives in the valorisation of poultry waste,” J Anal Appl Pyrolysis, vol. 169, Jan. 2023, doi: 10.1016/j.jaap.2022.105796.

H. Shaji, V. Chandran, and L. Mathew, “Organic fertilizers as a route to controlled release of nutrients,” in Controlled Release Fertilizers for Sustainable Agriculture, Elsevier, 2021, pp. 231–245. doi:10.1016/b978-0-12-819555-0.00013-3.

S. Xie, H. T. Tran, M. Pu, and T. Zhang, “Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends,” Mater Sci Energy Technol, vol. 6, pp. 331–342, Jan. 2023, doi:10.1016/j.mset.2023.02.006.

J. Park, K. H. Cho, M. Ligaray, and M. J. Choi, “Organic matter composition of manure and its potential impact on plant growth,” Sustainability (Switzerland), vol. 11, no. 8, Apr. 2019, doi:10.3390/su11082346.

Y. Geng, G. Cao, L. Wang, and S. Wang, “Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution,” PLoS One, vol. 14, no. 7, Jul. 2019, doi: 10.1371/journal.pone.0219512.

T. A. Abd El-Mageed, A. Abdelkhalik, S. A. Abd El-Mageed, and W. M. Semida, “Co-composted Poultry Litter Biochar Enhanced Soil Quality and Eggplant Productivity Under Different Irrigation Regimes,” J Soil Sci Plant Nutr, vol. 21, no. 3, pp. 1917–1933, Sep. 2021, doi: 10.1007/s42729-021-00490-4.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).