A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-supported Ferrite Steel

Van Nhanh Nguyen (1), Anh Xuan Nguyen (2), Dinh Tuyen Nguyen (3), Huu Cuong Le (4), Van Phuc Nguyen (5)
(1) Institute of Engineering, HUTECH University, Ho Chi Minh city, Vietnam
(2) School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
(3) PATET Research Group, Ho Chi Minh city University of Transport, Ho Chi Minh city, Vietnam
(4) Institute of Maritime, Ho Chi Minh city University of Transport, Ho Chi Minh city, Vietnam
(5) Institute of Maritime, Ho Chi Minh city University of Transport, Ho Chi Minh city, Vietnam
Fulltext View | Download
How to cite (IJASEIT) :
Nguyen , Van Nhanh, et al. “A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-Supported Ferrite Steel”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 309-25, doi:10.18517/ijaseit.14.1.19706.
Mechanical parts on ships and automobiles are diverse in shape, size, and working conditions. They operate with static, cyclic, and shock loads in various environments at low and high temperatures. Therefore, materials need to be highly durable to ensure the reliability of parts and structures on ships and automobiles. Currently, materials used in the shipbuilding and automotive industry are diverse, and steel is commonly used. Therefore, the shipbuilding and automotive industry requires increasingly higher steel mechanical properties. Among the advanced high-strength steel families, low Mn steels with phase change, thanks to the plastic deformation process, are steel lines with high durability, flexibility, and good fatigue resistance. Therefore, low Mn steel is suitable for manufacturing load-bearing parts that undergo deformation to create the required shape. This work presents general studies on the effects of some elements, such as Mn, Si, and C, on the microstructure and mechanical properties of TRIP steel. This article also presents the mechanism of the phase transformation process of TRIP steel when heated and cooled under some conditions, the thermodynamic basis of the formation of TRIP-type bainitic ferrite steel structure, and the influence of C, Mn, and Si on the formation kinetics of TBF steel structure. Through these review studies, the article synthesizes and identifies a number of phase transformation mechanisms for steel; the influence of certain alloying elements on the microstructure and mechanical properties of steel has been determined.

P. C. L. Le, J. I. Kim, and K. Kim, “The growth of Korean companies and their contributions to the miracle of the Han River,” Int. J. Multimed. Ubiquitous Eng., vol. 11, no. 5, pp. 253–266, 2016.

R. Yin, Metallurgical process engineering. Springer Science & Business Media, 2011.

M. Ziółkowski and T. Dyl, “Possible applications of additive manufacturing technologies in shipbuilding: A review,” Machines, vol. 8, no. 4, p. 84, 2020.

T. N. Le, M. K. Pham, A. T. Hoang, T. N. M. Bui, and D. N. Nguyen, “Microstructure Change For Multi-Pass Welding Between Austenitic Stainless Steel And Carbon Steel,” J. Mech. Eng. Res. Dev., vol. 2, no. 2, pp. 97–102, 2018, doi: 10.26480/jmerd.02.2018.97.102.

H. Anh Tuan, D. Nam Nguyen, and V. Viet Pham, “Heat Treatment Furnace For Improving The Weld Mechanical Properties: Design and Fabrication,” Int. J. Mech. Eng. Technol. (IJMET, vol. 9, no. 6, pp. 496–506, 2018.

T. N. Le, M. K. Pham, A. T. Hoang, and D. N. Nguyen, “Microstructures And Elements Distribution In The Transition Zone Of Carbon Steel And Stainless Steel Welds,” J. Mech. Eng. Res. Dev., vol. 41, no. 3, pp. 27–31, Sep. 2018, doi:10.26480/jmerd.03.2018.27.31.

A. T. Hoang, V. V Le, A. X. Nguyen, and D. N. Nguyen, “A Study On The Changes In Microstructure And Mechanical Properties Of Multi-Pass Welding Between 316 Stainless Steel And Low-Carbon Steel,” J. Adv. Manuf. Technol., vol. 12, no. 2, pp. 25–40, 2018.

Q. Gao et al., “Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: a review,” Mater. Today Commun., p. 104830, 2022.

H. E. Boyer, “Heat treating of nonferrous alloys.” Springer, 2013.

X. . Pham, A. . Hoang, and D. . Nguyen, “A study on the effect of the change of tempering temperature on the microstructure transformation of Cu-Ni-Sn alloy,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 4, pp. 27–34, 2018.

D. N. Nguyen, A. T. Hoang, M. T. Sai, M. Q. Chau, and V. V. Pham, “Effect of Sn component on properties and microstructure Cu-Ni-Sn alloys,” J. Teknol., vol. 80, no. 6, pp. 43–51, 2018.

D. M. Fellicia, M. I. P. Hidayat, R. Rochiem, L. B. A. Putra, A. T. Wibisono, and M. Ramadhani, “Modeling and Experimental Study of Al-Cu Alloy Sand Casting for Circuit Breaker,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 3, pp. 880–887, 2019.

X. D. Pham, A. T. Hoang, D. N. Nguyen, and V. V Le, “Effect of Factors on the Hydrogen Composition in the Carburizing Process,” Int. J. Appl. Eng. Res., vol. 12, no. 19, pp. 8238–8244, 2017.

A. T. Hoang, T. T. Van Tran, V. B. Nguyen, and D. N. Nguyen, “Effect of Heat Treatment Process on The Microstructure and Mechanical Properties of The Spray Coating Ni-Cr on CT38 Steel,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 560–568, Mar. 2019, doi:10.18517/ijaseit.9.2.7891.

T. X. Tran et al., “Effect of poly-alkylene-glycol quenchant on the distortion, hardness, and microstructure of 65Mn steel,” C. Mater. Contin., vol. 67, no. 3, pp. 3249–3264, 2021.

A. T. Hoang et al., “Thermodynamic Simulation on the Change in Phase for Carburizing Process,” C. Mater. Contin., vol. 68, no. 1, pp. 1129–1145, 2021.

H. Thi, N. Quyen, V. A. Tuan, T. P. Dong, V. V. Quyen, and N. D. Nam, “Effect of Rare Earth on M7C3 Eutectic Carbide in 13 % Chromium Alloy Cast Iron,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 724–728, 2019.

A. Fuad et al., “Effects of Laminate Arrangement on the Failure Behaviour of Hybrid Composite Plates under Transverse Sinusoidal Load,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 3, pp. 799–803, 2019.

F. Khathyri, B. Elkihel, and F. Delaunois, “Non-Destructive Testing by Ultrasonic and Thermal Techniques of an Impacted Composite Material,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, pp. 2360–2366, 2018.

S. Hou et al., “Facile fabrication of flexible superhydrophobic surfaces with high durability and good mechanical strength through embedding silica nanoparticle into polymer substrate by spraying method,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 664, p. 131181, 2023.

M. J. Chinchillas-Chinchillas et al., “Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers,” Constr. Build. Mater., vol. 210, pp. 32–39, 2019.

R. M. Bajracharya, A. C. Manalo, W. Karunasena, and K. Lau, “An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites,” Mater. Des., vol. 62, pp. 98–112, 2014.

M. K. Pham, D. N. Nguyen, and A. T. Hoang, “Influence of Vanadium Content on the Microstructure and Mechanical Properties of High-Manganese Steel,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 2, pp. 141–147, 2018.

M. Abid, M. Kchaou, A. T. Hoang, and M. Haboussi, “Wear Mechanisms Analysis and Friction Behavior of Anodic Aluminum Oxide Film 5083 under Cyclic Loading,” J. Mater. Eng. Perform., vol. 33, no. 3, pp. 1527–1537, Aug. 2024, doi: 10.1007/s11665-023-08616-8.

International Iron and Steel Committee on Automotive Applications, “Advanced High Strength Steels (AHSS) Application Guidelines,” 2005.

M. Y. Demeri, Advanced high-strength steels: science, technology, and applications. ASM international, 2013.

N. V. L. Le, D. N. Nguyen, A. T. Vu, D. T. Nguyen, and T. T. T. Tran, “Review on bainite phase transformation and mechanism in CMnSi steel,” in AIP Conference Proceedings, AIP Publishing, 2023.

V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, “The enhancement of ductility in high-strength steels,” ASM Trans Quart, vol. 60, no. 2, pp. 252–259, 1967.

P. I. Christodoulou, “Effect of retained austenite transformation on the fatigue behaviour of aluminum containing TRIP steels.” Doctoral dissertation, University of Thessaly, 2018.

J. Zhao and Z. Jiang, “Thermomechanical processing of advanced high strength steels,” Prog. Mater. Sci., vol. 94, pp. 174–242, 2018.

S. Hashimoto, S. Ikeda, K. Sugimoto, and S. Miyake, “Effects of Nb and Mo addition to 0.2% C-1.5% Si-1.5% Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets,” ISIJ Int., vol. 44, no. 9, pp. 1590–1598, 2004.

L. Skálová, R. Divišová, and D. Jandová, “Thermo-mechanical processing of low-alloy TRIP-steel,” J. Mater. Process. Technol., vol. 175, no. 1–3, pp. 387–392, 2006.

E. Erişir, O. G. Bilir, Y. E. Sözer, Ö. Ararat, and K. Davut, “Partial austenitisation and TBF steel composed of ferrite, bainitic ferrite, and austenite,” Mater. Sci. Technol., vol. 39, no. 1, pp. 105–116, 2023.

S. Traint, A. Pichler, M. Blaimschein, B. Röthler, C. Krempaszky, and E. Werner, “Alloy design, processing and properties of TRIP steels: A critical comparison,” in International Conference on Advanced High Strength Sheet Steels for Automotive Applications - Proceedings, 2004.

B. Sunil and S. Rajanna, “Evaluation of mechanical properties of ferrite-martensite DP steels produced through intermediate quenching technique,” SN Appl. Sci., vol. 2, no. 8, 2020, doi: 10.1007/s42452-020-03246-4.

S. Qin, Y. Lu, S. B. Sinnott, and A. M. Beese, “Influence of phase and interface properties on the stress state dependent fracture initiation behavior in DP steels through computational modeling,” Mater. Sci. Eng. A, vol. 776, 2020, doi: 10.1016/j.msea.2020.138981.

D. Van Hien, “Influence of thermal-mechanical on microstructure and mechanical of TRIP CMnSi Steel from foam-iron,” Institute of Military Science and Technology, 2018.

M. Soleimani, H. Mirzadeh, and C. Dehghanian, “Effects of tempering on the mechanical and corrosion properties of dual phase steel,” Mater. Today Commun., vol. 22, 2020, doi: 10.1016/j.mtcomm.2019.100745.

B. Fu, W. Y. Yang, M. Y. Lu, Q. Feng, L. F. Li, and Z. Q. Sun, “Microstructure and mechanical properties of C-Mn-Al-Si hot-rolled TRIP steels with and without Nb based on dynamic transformation,” Mater. Sci. Eng. A, vol. 536, pp. 265–268, 2012, doi:10.1016/j.msea.2012.01.012.

I. Samajdar, E. Girault, B. Verlinden, E. Aernoudt, and J. Van Humbeeck, “Transformations during intercritical annealing of a TRIP-assisted steel,” ISIJ Int., vol. 38, no. 9, 1998, doi:10.2355/isijinternational.38.998.

P. J. Jacques, “Transformation-induced plasticity for high strength formable steels,” Curr. Opin. Solid State Mater. Sci., vol. 8, no. 3–4, 2004, doi: 10.1016/j.cossms.2004.09.006.

H. D. Van, C. N. Van, T. T. Ngoc, and T. S. Manh, “ScienceDirect Influence of heat treatment on microstructure and mechanical properties of a CMnSi TRIP steel using design of experiment,” vol. 00, 2017.

A. Kupke, “Effect of the microstructure on the unloading characteristics of DP steel,” Deakin University, 2017.

H. K. D. H. Bhadeshia, Bainite in steels, 2nd Editio. Cambridge University: Institute of Materials, 2001.

Yang Z-G, Fang H-S. "An overview on bainite formation in steels," Curr Opin Solid State Mater Sci., 9, pp.277–86, 2005.

H. Takechi, “Transformation hardening of steel sheet for automotive applications,” JOM, vol. 60, no. 12, 2008, doi: 10.1007/s11837-008-0160-6.

R. L. Bodnar, T. Ohhashi, and R. I. Jaffee, “Errata: Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels,” Metallurgical Transactions A, vol. 20, no. 10. 1989. doi: 10.1007/BF02650311.

T. T. T. Van Le Van Cuong, Nguyen Anh Xuan, Le Thi Nhung, Material Engineering. Vimaru publisher, 2017.

A. M. Ravi, A. Navarro-López, J. Sietsma, and M. J. Santofimia, “Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms,” Acta Mater., vol. 188, 2020, doi:10.1016/j.actamat.2020.02.003.

S. M. Hasan, S. Kumar, D. Chakrabarti, and S. B. Singh, “Effect of prior austenite grain size on the formation of carbide-free bainite in low-alloy steel,” Philos. Mag., vol. 100, no. 18, 2020, doi:10.1080/14786435.2020.1764653.

S. Keeler and M. Kimchi, “Advanced High-Strength Steels Application Guidelines Version 5.0,” World AutoSteel.org, no. May, p. 511, 2014, doi: 10.1016/S1644-9665(12)60197-6.

Y. Tomota et al., “Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction,” Acta Mater., vol. 52, no. 20, 2004, doi: 10.1016/j.actamat.2004.08.016.

C. G. Lee, S. J. Kim, C. S. Oh, and S. Lee, “Effects of heat treatment and Si addition on the mechanical properties of 0.1 wt% C TRIP-aided cold-rolled steels,” ISIJ Int., vol. 42, no. 10, pp. 1162–1168, 2002, doi: 10.2355/isijinternational.42.1162.

S. Allain and A. Perlade, “Applications Why developing Advanced High Strength Steels”.

L. J. Zhu, D. Wu, and X. M. Zhao, “Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled trip steel,” Acta Metall. Sin. (English Lett., vol. 21, no. 3, pp. 163–168, 2008, doi: 10.1016/S1006-7191(08)60034-4.

A. Berezovski and G. Maugin, “Thermodynamics of Discrete Systems and Martensitic Phase Transition Simulation,” 2001.

C. Garcia-Mateo, T. Sourmail, F. G. Caballero, C. Capdevila, and C. De García Andrés, “New approach for the bainite start temperature calculation in steels,” Mater. Sci. Technol., vol. 21, no. 8, pp. 934–940, Aug. 2005, doi: 10.1179/174328405X51622.

Y. Esparza, A. Ullah, Y. Boluk, and J. Wu, “Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds,” Mater. Des., vol. 133, 2017, doi: 10.1016/j.matdes.2017.07.052.

H. C. Chen, H. Era, and M. Shimizu, “Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet,” Metall. Trans. A, vol. 20, no. 3, pp. 437–445, Mar. 1989, doi: 10.1007/BF02653923.

L. C. D. Fielding, “The bainite controversy,” Materials Science and Technology (United Kingdom), vol. 29, no. 4. 2013. doi:10.1179/1743284712Y.0000000157.

L. C. Duong, Material Science. Science and Engineerinh Publisher - Hanoi, 2000.

L. Leach, Modeling Bainite Formation in Steels. KTH Royal Institute of Technology, 2018.

H. Matsuda and H. K. D. H. Bhadeshia, “Kinetics of the bainite transformation,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 460, no. 2046, pp. 1707–1722, Jun. 2004, doi: 10.1098/rspa.2003.1225.

J. Ågren, “Thermodynamics of phase transformations in steels,” in Phase Transformations in Steels, vol. 1, Elsevier Ltd, 2012, pp. 56–93. doi: 10.1533/9780857096104.1.56.

D. Quidort and Y. J. M. Brechet, “Isothermal growth kinetics of bainite in 0.5% C steels,” Acta Mater., vol. 49, no. 20, 2001, doi:10.1016/S1359-6454(01)00316-0.

D. Ponge, Z. Peng, A. J. Breen, and K. Analysis, “Phase nucleation through con fi ned spinodal fl uctuations at crystal defects evidenced in Fe-Mn alloys,” no. March, 2018, doi: 10.1038/s41467-018-03591-4.

R. Trivedi and G. M. Pound, “Growth kinetics of plate-like precipitates,” J. Appl. Phys., vol. 40, no. 11, 1969, doi:10.1063/1.1657190.

J. I. Goldstein, Phase Transformations in Ferrous Alloys. 1984.

G. I. Rees and H. K. D. H. Bhadeshia, “Bainite transformation kinetics Part 1 Modified model,” Mater. Sci. Technol. (United Kingdom), vol. 8, no. 11, 1992, doi: 10.1179/mst.1992.8.11.985.

Fisher M, Radin C. Definition of Thermodynamic Phases and Phase Transitions. 2006.

M. Enomoto, G. Spanos, and R. A. Masumura, “The Growth Kinetics and Shape Evolution of Precipitates Growing by the Ledge Mechanism,” MRS Proc., vol. 237, 1991, doi: 10.1557/proc-237-119.

B. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, Thermo-mechanical processing of metallic materials. Elsevier, 2007.

M. Soleimani, A. Kalhor, and H. Mirzadeh, “Transformation-induced plasticity (TRIP) in advanced steels: A review,” Mater. Sci. Eng. A, vol. 795, p. 140023, 2020.

S. X. Zhao, W. Wang, and D. L. Mao, “On Bainite Transformation Kinetics and Mechanism,” Mater. Sci. Forum, vol. 539–543, 2007, doi: 10.4028/www.scientific.net/msf.539-543.3018.

E. P. Simonen, H. I. Aaronson, and R. Trivedi, “Lengthening kinetics of ferrite and bainite sideplates,” Metall. Trans., vol. 4, no. 5, 1973, doi: 10.1007/BF02644517.

Pereloma, E., & Edmonds, D. Phase transformations in steels. Fundamentals and diffusion-controlled transformations, (1st ed., vol. 1), Woodhead Publishing, 2012.

Z. cheng Zhang, F. xian Zhu, and Y. mei Li, “Effect of Thermomechanical Control Processing on Microstructure and Mechanical Properties of Fe-0. 2C-1. 44Si-1. 32Mn Hot Rolled TRIP Steel,” J. Iron Steel Res. Int., vol. 17, no. 7, pp. 44–50, 2010, doi:10.1016/S1006-706X(10)60155-0.

A. S. M. I. Handbook, “ASM handbook (Heat treating of Irons and Steels),” ASM Int., 2005.

H. K. D. H. Bhadeshia, “Nucleation of Burst Martensite,” Journal of Materials Science, vol. 17. pp. 383–386, 1982.

S. Chatterjee and H. K. D. H. Bhadeshia, “TRIP-assisted steels: Cracking of high-carbon martensite,” Mater. Sci. Technol., vol. 22, no. 6, pp. 645–649, 2006, doi: 10.1179/174328406X86182.

H. L. Yi, S. K. Ghosh, H. Bhadeshia, and K. Y. Lee, “δ-TRIP Steel,” Pohang Pohang Univ. Sci. Technol., 2010.

S. Chatterjee and H. K. D. H. Bhadeshia, “Transformation induced plasticity assisted steels: Stress or strain affected martensitic transformation?,” Mater. Sci. Technol., vol. 23, no. 9, pp. 1101–1104, Sep. 2007, doi: 10.1179/174328407X226536.

S. Chatterjee, M. Murugananth, and H. K. D. H. Bhadeshia, “δ TRIP steel,” Mater. Sci. Technol., vol. 23, no. 7, pp. 819–827, 2007, doi: 10.1179/174328407X179746.

A. Saha Podder and H. K. D. H. Bhadeshia, “Thermal stability of austenite retained in bainitic steels,” Mater. Sci. Eng. A, vol. 527, no. 7–8, pp. 2121–2128, 2010, doi: 10.1016/j.msea.2009.11.063.

H. L. Yi, K. Y. Lee, and H. K. D. H. Bhadeshia, “Extraordinary ductility in Al-bearing δ-TRIP steel,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 467, no. 2125, pp. 234–243, 2011, doi:10.1098/rspa.2010.0127.

X. J. Jin et al., “High Strength Steels Treated by Quenching and Partitioning Process Location and Figures,” 2010.

H. K. D. H. Bhadeshia and D. V. Edmonds, “Tempered Martensite Embrittlement: Role of Retained Austenite and Cementite.,” Met Sci, vol. 13, no. 6. pp. 325–334, 1979.

A. S. Podder, I. Lonardelli, A. Molinari, and H. K. D. H. Bhadeshia, “Thermal stability of retained austenite in bainitic steel: An in situ study,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 467, no. 2135, pp. 3141–3156, 2011, doi: 10.1098/rspa.2011.0212.

S. Jamshaid, Materials Engineering and Science an Introduction To Materials Engineering and Science for Chemical and Materials Engineers, no. November 2013. 2016.

W. D. Callister, Materials Science and Engineering, vol. 7. 2007.

Ley Organica de Salud, “No Titleكتاب,” Vasc. Embolotherapy, pp. 107–118, 2006.

M. A. Yescas and H. K. D. H. Bhadeshia, “Model for the maximum fraction of retained austenite in austempered ductile cast iron,” Mater. Sci. Eng. A, vol. 333, no. 1–2, pp. 60–66, 2002, doi: 10.1016/S0921-5093(01)01840-8.

Dowling NE. Mean stress effects in stress-life and strain-life fatigue. SAE Technical Paper; 2004.

G. Papadimitriou and J. M. R. Genin, “Kinetic and Thermodynamic Aspects of The Bainite Reaction in A Silicon Steel.,” in Materials Research Society Symposia Proceedings, 1984. doi: 10.1557/proc-21-747.

S. AA, “Thermodynamic Calculation of a Heat of First-Order Phase Transitions,” J. Thermodyn. Catal., vol. 7, no. 2, 2016, doi: 10.4172/2157-7544.1000163.

X. L. Wan, R. Wei, L. Cheng, M. Enomoto, and Y. Adachi, “Lengthening kinetics of ferrite plates in high-strength low-carbon low alloy steel,” J. Mater. Sci., vol. 48, no. 12, 2013, doi: 10.1007/s10853-013-7250-8.

Fultz B. Phase transitions in materials. Cambridge University Press; 2020.

I. K. Razumov, Y. N. Gornostyrev, and M. I. Katsnelson, “Towards the ab initio-based theory of phase transformations in iron and steel,” Phys. Met. Metallogr., vol. 118, pp. 362–388, 2017.

G. I. Rees and H. K. D. H. Bhadeshia, “Bainite transformation kinetics Part 1 Modified model,” Mater. Sci. Technol., vol. 8, no. 11, 2012, doi:10.1179/026708392790409842.

Z. Chen, J. Gu, and L. Han, “Bainite Transformation Characteristics of High-Si Hypereutectoid Bearing Steel,” Metallogr. Microstruct. Anal., vol. 7, no. 1, 2018, doi: 10.1007/s13632-017-0410-5.

H. L. Yi, K. Y. Lee, and H. K. D. H. Bhadeshia, “Stabilisation of ferrite in hot rolled d-TRIP steel,” Mater. Sci. Technol., vol. 27, no. 2, pp. 525–529, 2011, doi: 10.1179/026708309X12506934374001.

G. S. Jung, K. Y. Lee, J. B. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, “Spot weldability of TRIP assisted steels with high carbon and aluminium contents,” Sci. Technol. Weld. Join., vol. 17, no. 2, pp. 92–98, 2012, doi: 10.1179/1362171811Y.0000000081.

M. Marimuthu, “Design of welding alloys creep and toughness,” no. November, pp. 1–187, 2002.

H. L. Yi, K. Y. Lee, and H. K. D. H. Bhadeshia, “Mechanical stabilisation of retained austenite in δ-TRIP steel,” Mater. Sci. Eng. A, vol. 528, no. 18, pp. 5900–5903, 2011, doi:10.1016/j.msea.2011.03.111.

S. H. Hendi, S. Panahiyan, B. E. Panah, and M. Jamil, “Alternative approach to thermodynamic phase transitions,” Chinese Phys. C, vol. 43, no. 11, 2019, doi: 10.1088/1674-1137/43/11/113106.

M. Cottura, B. Appolaire, A. Finel, and Y. Le Bouar, “Plastic relaxation during diffusion-controlled growth of Widmanstätten plates,” Scr. Mater., vol. 108, 2015, doi:10.1016/j.scriptamat.2015.06.032.

R. E. Smallman and R. J. BiShop, “Chapter 4 - Defects in solids,” Mod. Phys. Metall. Mater. Eng. (Sixth Ed., pp. 84–124, 1999.

B. C. De Cooman, “Structure–properties relationship in TRIP steels containing carbide-free bainite,” Curr. Opin. Solid State Mater. Sci., vol. 8, no. 3–4, pp. 285–303, 2004.

M. Rettenmayr, “Alloy development using modern tools,” Int. J. Mater. Res., vol. 100, no. 2, pp. 153–159, 2009.

R. W. Cahn and P. Haasen, Physical metallurgy, vol. 1. Elsevier, 1996.

R.E. Smallman and R.J. Bishop, Modern Physical Metallurgy and Materials Engineering. 1999.

R. E. Smallman and R. J. Bishop, “The structure and bonding of atoms,” Mod. Phys. Metall. Mater. Eng., pp. 1–10, 1999, doi:10.1016/b978-075064564-5/50001-x.

H. K. D. H. Bhadeshia and D. V. Edmonds, “The Distribution of Retained Austenite in MArtensite and the Influence of Inter-lath Crystallography,” Proc. Int. Conf. on Martensitic Transformations. pp. 28–33, 1979.

R. E. Smallman and R. J. Bishop, “The characterization of materials,” Mod. Phys. Metall. Mater. Eng., pp. 125–167, 1999, doi:10.1016/b978-075064564-5/50005-7.

R. E. Smallman and R. J. Bishop, Structural phases: Their formation and transitions. Oxford, UK: Butterworth-Heinemann, 1999.

ASM International Handbook Committee, “ASM Handbook: Materials Characterization, Volume 10,” Book, 1998.

A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, “Recrystallization and Related Annealing Phenomena - Chapter 3 - Deformation Textures,” Recryst. Relat. Annealing Phenom., 2017, doi:10.1016/B978-0-08-098235-9.00003-3.

B. Fu, W. Yang, L. Li, and Z. Sun, “Effect of carbon content on microstructure and mechanical properties of cold-rolled C-Mn-Al-Si trip steel,” Jinshu Xuebao/Acta Metall. Sin., vol. 49, no. 4, 2013, doi:10.3724/SP.J.1037.2012.00656.

H. Nasr El-Din, E. A. Showaib, N. Zaafarani, and H. Refaiy, “Structure-properties relationship in TRIP type bainitic ferrite steel austempered at different temperatures,” Int. J. Mech. Mater. Eng., vol. 12, no. 1, p. 3, Dec. 2017, doi: 10.1186/s40712-017-0071-9.

R. W. K. Honeycombe and R. F. Mehl, “Transformation from austenite in alloy steels,” Metall. Trans. A, vol. 7, pp. 915–936, 1976.

T. Minote, S. Torizuka, A. Ogawa, and M. Niikura, “Modeling of Transformation Behavior and Compositional Partitioning in TRIP Steel.,” ISIJ Int., vol. 36, no. 2, pp. 201–207, 1996, doi:10.2355/isijinternational.36.201.

F. C. Campbell, Elements of metallurgy and engineering alloys. ASM international, 2008.

N. N. Linh, P. T. Bình, T. V. Đoàn, and Đ. B. Trụ, “Các kết quả nghiên cứu ứng dụng về sản xuất sắt xốp Mirex và thép hợp kim,” in Hội nghị KH&CN toàn quốc về cơ khí lần thứ III, 2013.

S. C. Baik, S. Kim, Y. S. Jin, and O. Kwon, “Effects of Alloying Elements on Mechanical Properties and Phase Transformation of Cold Rolled TRIP Steel Sheets.,” ISIJ Int., vol. 41, no. 3, pp. 290–297, 2001, doi: 10.2355/isijinternational.41.290.

W. Bleck, A. Frehn, and J. Ohlert, “Niobium in dual phase and trip steels,” Niobium–Science Technol. Proceedings. Niobium, pp. 727–752, 2001.

N. Low and N. Grain, “7.4.10 Kinetics of strain-ageing,” no. 2, 1960.

S. M. C. van Bohemen, “Bainite and martensite start temperature calculated with exponential carbon dependence,” Mater. Sci. Technol., 2013.

Y. Wang et al., “Enhanced stretch flangeability and crack propagation behavior of an 1100áMPa grade TRIP-aided bainitic ferrite steel,” J. Mater. Res. Technol., vol. 26, pp. 5503–5517, 2023.

T. Furuhara, K. Tsuzumi, G. Miyamoto, T. Amino, and G. Shigesato, “Characterization of Transformation Stasis in Low-Carbon Steels Microalloyed with B and Mo,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 13, 2014, doi: 10.1007/s11661-014-2584-7.

N. V. Luzginova, L. Zhao, and J. Sietsma, “Bainite formation kinetics in high carbon alloyed steel,” Mater. Sci. Eng. A, vol. 481–482, no. 1-2 C, 2008, doi: 10.1016/j.msea.2006.11.173.

F. Hardesty, “Metals handbook, ninth edition. Volume 3, Properties and selection: Stainless steels, tool materials and special-purpose metals,” J. Mech. Work. Technol., vol. 6, no. 4, 1982, doi:10.1016/0378-3804(82)90039-0.

Junya Kobayashi, “A basic study on the microstructure and mechanical properties of ultrahigh-strength TRIP-aided martensitic steel Junya Kobayashi,” 2014.

K. F. Rodrigues, G. M. M. Mourão, and G. L. Faria, “Kinetics of Isothermal Phase Transformations in Premium and Standard Rail Steels,” Steel Res. Int., vol. 92, no. 2, Feb. 2021, doi: 10.1002/srin.202000306.

A. M. Ravi, J. Sietsma, and M. J. Santofimia, “Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels,” Acta Mater., vol. 105, 2016, doi: 10.1016/j.actamat.2015.11.044.

W. Yan, N. Xiao, Y. Chen, and D. Li, “Phase-field modeling of Widmanstätten ferrite formation during isothermal transformation in low carbon steels,” Comput. Mater. Sci., vol. 81, 2014, doi:10.1016/j.commatsci.2013.09.001.

W. Steven and A. G. Haynes, “The Temperature of Formation of Martensite and Bainite in Low-alloy Steels - Some Effects of Chemical Composition,” J. Iron Steel Inst., vol. 183, 1956.

T. Hojo, J. Kobayashi, T. Kajiyama, and K. Sugimoto, “Effects of Alloying Elements on Impact Properties of Ultra High-Strength TRIP-Aided Bainitic Ferrite Steels,” pp. 9–16.

N. Fonstein, Advanced High Strength Sheet Steels. 2015. doi: 10.1007/978-3-319-19165-2.

D. O. C. Tor, Structure and Properties of Advanced Fine Grained Steels Produced Using Novel Thermal Treatments.

P. J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K. T. Conlon, and F. Delannay, “Micromechanical characterisation of TRIP-assisted multiphase steels by in situ neutron diffraction,” Philos. Mag., vol. 86, no. 16, 2006, doi: 10.1080/14786430500529359.

R. Kuziak, R. Kawalla, and S. Waengler, “Advanced high strength steels for automotive industry,” Arch. Civ. Mech. Eng., vol. 8, no. 2, pp. 103–117, 2008.

M. Azuma, M. Takahashi, and N. Fujita, “Model for the Prediction of Microstructures and Mechanical Properties of Cold-rolled High Strength Steels,” Nippon Steel Tech. Rep., no. 102, pp. 44–50, 2013.

A. A. Shirzadi, H. K. D. H. Bhadeshia, L. Karlsson, and P. J. Withers, “Stainless steel weld metal designed to mitigate residual stresses,” Sci. Technol. Weld. Join., vol. 14, no. 6, pp. 559–565, 2009, doi: 10.1179/136217109X437178.

H. Halfa, “Recent Trends in Producing Ultrafine Grained Steels,” J. Miner. Mater. Charact. Eng., vol. 02, no. 05, 2014, doi: 10.4236/jmmce.2014.25047.

Z. Zhao, C. Liu, Y. Liu, and D. O. Northwood, “A new empirical formula for the bainite upper temperature limit of steel,” J. Mater. Sci., vol. 36, no. 20, 2001, doi: 10.1023/A:1011874708194.

S. Kang, S. Yoon, and S. J. Lee, “Prediction of bainite start temperature in alloy steels with different grain sizes,” ISIJ Int., vol. 54, no. 4, 2014, doi: 10.2355/isijinternational.54.997.

J. Hren, Introduction to analytical electron microscopy. Springer Science & Business Media, 2013.

D. François, A. Pineau, and A. Zaoui, Mechanical behaviour of materials, vol. 1. Springer, 1998.

J. J. Zhao, Y. L. He, N. Q. Zhu, M. Zhang, and L. Li, “Thermodynamic calculation and experimental study on complex phase steel,” in Advanced Materials Research, 2013, pp. 349–354. doi: 10.4028/www.scientific.net/AMR.716.349.

M. De Meyer, D. Vanderschueren, and B. De Cooman, “The Influence of Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels.,” in ISS, 41st Mechanical Working and Steel Processing Conference, 24-27/10/99, Baltimore, Vol. XXXXVII., 1999, pp. 265–276.

D. Krizan and B. C. D. E. Cooman, “Mechanical Properties of TRIP Steel Microalloyed with Ti Mechanical Properties of TRIP Steel Microalloyed with Ti,” no. July, 2014, doi: 10.1007/s11661-014-2292-3.

T. Fukagawa, H. Okada, and Y. Maehara, “Mechanism of Red Scale Defect Formation in Si-added Hot-rolled Steel Sheets.,” ISIJ Int., vol. 34, no. 11, pp. 906–911, 1994, doi: 10.2355/isijinternational.34.906.

J. B. R. Lawrence, “The effect of phase morphology and volume fraction of retained austenite on the formability of transformation induced plasticity steels,” Queen’s University, 2010.

J. Drumond, O. Girina, J. F. da Silva Filho, N. Fonstein, and C. A. S. de Oliveira, “Effect of Silicon Content on the Microstructure and Mechanical Properties of Dual-Phase Steels,” Metallogr. Microstruct. Anal., vol. 1, no. 5, pp. 217–223, Oct. 2012, doi: 10.1007/s13632-012-0034-8.

N. D. Nam, T. P. Dong, T. T. Nam, N. H. Hai, and P. M. Khanh, “Influence of the Deformation on the Microstructure and Mechanical Properties of TBF Steel,” J. Korean Soc. Precis. Eng., vol. 37, no. 8, pp. 595–600, Aug. 2020, doi: 10.7736/JKSPE.019.054.

I. D. Choi et al., “Deformation Behavior of Low Carbon TRIP Sheet Steels at High Strain Rates.,” ISIJ Int., vol. 42, no. 12, pp. 1483–1489, 2002, doi: 10.2355/isijinternational.42.1483.

O. Matsumura, Y. Sakuma, and H. Takechi, “Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel.,” Trans. Iron Steel Inst. Japan, vol. 27, no. 7, pp. 570–579, 1987, doi: 10.2355/isijinternational1966.27.570.

J. Zrnik, O. Stejskal, Z. Novy, and P. Hornak, “Relationship of microstructure and mechanical properties of TRIP-aided steel processed by press forging,” J. Mater. Process. Technol., vol. 192–193, pp. 367–372, Oct. 2007, doi: 10.1016/j.jmatprotec.2007.04.012.

A. Bachmaier, K. Hausmann, D. Krizan, and A. Pichler, “Development of TBF steels with 980 MPa tensile strength for automotive applications: microstructure and mechanical properties,” in Proceedings of the International Symposium on New Devel opments in Advanced High Strength Sheet Steels, Vail, CO, USA, 2013, pp. 23–27.

S.-C. Chen, Y.-T. Wang, Y.-C. Lin, C.-Y. Huang, J.-R. Yang, and H.-W. Yen, “Microstructure and mechanical behaviors of GPa-grade TRIP steels enabled by hot-rolling processes,” Mater. Sci. Eng. A, vol. 761, p. 138005, 2019.

L. Qian et al., “Enhancing both strength and ductility of low-alloy transformation-induced plasticity steel via hierarchical lamellar structure,” Scr. Mater., vol. 183, pp. 96–101, 2020.

T. Murata, S. Hamamoto, Y. Utsumi, T. Yamano, Y. Futamura, and T. Kimura, “Characteristics of 1180 MPa grade cold-rolled steel sheets with excellent formability,” Kobelco Technol. Rev., vol. 35, pp. 45–49, 2017.

Y. Li, W. Ding, and B. Wang, “Intercritical annealing pre-treatment used in a hot-dip galvanised TRIP steel,” Mater. Sci. Technol., vol. 35, no. 11, pp. 1372–1380, 2019.

T. Hojo et al., “Hydrogen embrittlement resistance of pre-strained ultra-high-strength low alloy TRIP-aided steel,” Int. J. Fract., vol. 224, no. 2, pp. 253–260, 2020.

T. Hojo, R. Kikuchi, H. Waki, F. Nishimura, Y. Ukai, and E. Akiyama, “Effect of strain rate on the hydrogen embrittlement property of ultra high-strength low alloy TRIP-aided steel,” Isij Int., vol. 58, no. 4, pp. 751–759, 2018.

D. Frómeta et al., “Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels,” Eng. Fract. Mech., vol. 229, p. 106949, 2020.

T. Hojo, K. Sugimoto, Y. Mukai, and S. Ikeda, “Effects of aluminum on delayed fracture properties of ultra high strength low alloy TRIP-aided steels,” ISIJ Int., vol. 48, no. 6, pp. 824–829, 2008.

T. Ruggles et al., “Ductility of advanced high-strength steel in the presence of a sheared edge,” Jom, vol. 68, pp. 1839–1849, 2016.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).