Analysis of Bathymetry Accuracy Using Sentinel 2 Satellite on Different Characteristics Waters in Bali Island -

Ni Nyoman Pujianiki (1), Komang Gede Putra Airlangga (2)
(1) Civil Engineering, Udayana University, Campus Bukit Jimbaran, Bali, Indonesia
(2) Master of Civil Engineering, Udayana University, Campus Sudirman, Denpasar, Bali, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Pujianiki, Ni Nyoman, and Komang Gede Putra Airlangga. “Analysis of Bathymetry Accuracy Using Sentinel 2 Satellite on Different Characteristics Waters in Bali Island: -”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 4, Aug. 2024, pp. 1363-72, doi:10.18517/ijaseit.14.4.19934.
Bathymetry surveys today are often carried out using the echo-sounding method, but this method has disadvantages, such as requiring a lot of time and being quite expensive. Along with the development of technology, some alternative methods can be used to visualize bathymetry, such as remote sensing. Remote Sensing uses satellite imagery in the operation, while the technique to acquire bathymetry is called Satellite-Derived Bathymetry (SDB). This method uses an optical satellite with several color bands or multispectral images. In this research, a satellite used to map ocean depth is Sentinel-2. The SDB technique used in this research is the Lyzenga Algorithm. The Lyzenga algorithm uses multilinear logarithms in its operation and can be used using three optical image channels (blue, green, and red channels). Supported by the SDB algorithm, an analysis of research locations was carried out at several points in the waters of Bali Island due to the diversity of water characteristics such as sea depth and wave height. From several analysis results of different characteristic waters in Bali Island, We can see that many parameters impact the result of the Satellite to visualize bathymetry. The Satellite's optimal result for reading the bathymetry depth is approximately 30 meters. But in reality, some cases can interfere with the accuracy of Satellite visualizing bathymetry within this depth. Breaking waves, high water sedimentation, and some objects that could guide the Satellite to misread them as elevation.

Z. Li et al., “Exploring modern bathymetry: A comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping,” Frontiers in Marine Science, vol. 10, May 2023, doi: 10.3389/fmars.2023.1178845.

H. M. Dierssen and A. E. Theberge, “Bathymetry: Assessment,” Coastal and Marine Environments, pp. 175–184, May 2020, doi:10.1201/9780429441004-19.

I. O. Ferreira, L. C. de Andrade, V. G. Teixeira, and F. C. M. Santos, “State of art of bathymetric surveys,” Boletim de Ciências Geodésicas, vol. 28, no. 1, 2022, doi: 10.1590/s1982-21702022000100002.

F. Tsukada, T. Shimozono, and Y. Matsuba, “UAV-based mapping of nearshore bathymetry over broad areas,” Coastal Engineering Journal, vol. 62, no. 2, pp. 285–298, Apr. 2020, doi:10.1080/21664250.2020.1747766.

J. Wan and Y. Ma, “Shallow Water Bathymetry Mapping of Xinji Island Based on Multispectral Satellite Image using Deep Learning,” Journal of the Indian Society of Remote Sensing, vol. 49, no. 9, pp. 2019–2032, Apr. 2021, doi: 10.1007/s12524-020-01255-9.

T. Kutser, J. Hedley, C. Giardino, C. Roelfsema, and V. E. Brando, “Remote sensing of shallow waters – A 50 year retrospective and future directions,” Remote Sensing of Environment, vol. 240, p. 111619, Apr. 2020, doi: 10.1016/j.rse.2019.111619.

E. Vahtmäe and T. Kutser, “Mapping Bottom Type and Water Depth in Shallow Coastal Waters with Satellite Remote Sensing,” Journal of Coastal Research, vol. 50, no. sp1, Jun. 2007, doi: 10.2112/jcr-si50-036.1.

N. N. Pujianiki, G. B. A. S. Widhi, I. N. G. Antara, I. G. R. M. Temaja, and T. Osawa, “Monitoring Coastline Changes Using Landsat Application in Batu Mejan Beach,” International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 2, pp. 738–745, Apr. 2021, doi: 10.18517/ijaseit.11.2.13162.

N. N. Pujianiki, I. N. Sudi Parwata, and T. Osawa, “A New Simple Procedure for Extracting Coastline from SAR Image Based on Low Pass Filter and Edge Detection Algorithm,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, vol. 12, no. 3, p. 175, Nov. 2021, doi:10.24843/lkjiti.2021.v12.i03.p05.

N. N. Pujianiki, “Coastline changes monitoring induced by man-made structures using synthetic aperture radar: A new simple approach,” IOP Conference Series: Earth and Environmental Science, vol. 1117, no. 1, p. 012041, Dec. 2022, doi: 10.1088/1755-1315/1117/1/012041.

P. NN, A. ING, T. IGRM, P. IGDY, and O. T, “Application of UAV in Rip Current Investigations,” International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 6, pp. 2337–2343, Dec. 2020, doi: 10.18517/ijaseit.10.6.12620.

M. D. M. Manessa et al., “Preliminary Result of Drone UAV Derived Multispectral Bathymetry in Coral Reef Ecosystem: A Case Study of Pemuteran Beach,” International Journal on Advanced Science, Engineering and Information Technology, vol. 12, no. 4, p. 1512, Jul. 2022, doi: 10.18517/ijaseit.12.4.16107.

V. Khokhlov, V. Lukin, and S. Khokhlov, “Modelling full-colour images of Earth: simulation of radiation brightness field of Earth’s atmosphere and underlying surface,” Annals of GIS, vol. 29, no. 1, pp. 143–161, Apr. 2022, doi: 10.1080/19475683.2022.2064911.

M. Ashphaq, P. K. Srivastava, and D. Mitra, “Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research,” Journal of Ocean Engineering and Science, vol. 6, no. 4, pp. 340–359, Dec. 2021, doi: 10.1016/j.joes.2021.02.006.

B. Pflug et al., “Next updates of atmospheric correction processor Sen2Cor,” Image and Signal Processing for Remote Sensing XXVI, Sep. 2020, doi: 10.1117/12.2574035.

Syam’ani, “Potensi Pemanfaatan Teknologi Citra Esa Sentinel-2 Msi Untuk Pemantauan Kualitas Air,” Pros. Semin. Nas. Lingkung. Lahan Basah, vol. 6, no. April, pp. 1–8, 2021.

T. Duplančić Leder, M. Baučić, N. Leder, and F. Gilić, “Optical Satellite-Derived Bathymetry: An Overview and WoS and Scopus Bibliometric Analysis,” Remote Sensing, vol. 15, no. 5, p. 1294, Feb. 2023, doi: 10.3390/rs15051294.

M. Al Najar, G. Thoumyre, E. W. J. Bergsma, R. Almar, R. Benshila, and D. G. Wilson, “Satellite derived bathymetry using deep learning,” Machine Learning, vol. 112, no. 4, pp. 1107–1130, Jul. 2021, doi:10.1007/s10994-021-05977-w.

G. Casal, P. Harris, X. Monteys, J. Hedley, C. Cahalane, and T. McCarthy, “Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models,” GIScience & Remote Sensing, vol. 57, no. 3, pp. 271–286, Nov. 2019, doi:10.1080/15481603.2019.1685198.

A. Knudby and G. Richardson, “Incorporation of neighborhood information improves performance of SDB models,” Remote Sensing Applications: Society and Environment, vol. 32, p. 101033, Nov. 2023, doi: 10.1016/j.rsase.2023.101033.

M. Niroumand-Jadidi, F. Bovolo, and L. Bruzzone, “SMART-SDB: Sample-specific multiple band ratio technique for satellite-derived bathymetry,” Remote Sensing of Environment, vol. 251, p. 112091, Dec. 2020, doi: 10.1016/j.rse.2020.112091.

M. U. Nuha, A. Basith, and W. Asriningrum, “Optimalisasi Parameter Analitis Ekstraksi Kedalaman Laut dengan Citra Satelit Resolusi Tinggi Pada Zona Laut Dangkal,” Universitas Gadjah Mada, 2019.

S. Aji, A. Sukmono, and F. J. Amarrohman, " Analisis Pemanfaatan Satellite Derived Bathymetry Citra Sentinel-2A Dengan Menggunakan Algoritma Lyzenga Dan Stumpf (Studi Kasus : Perairan Pelabuhan Malahayati, Provinsi Aceh)," Jurnal Geodesi Undip, vol. 10, no. 1, pp. 68-77, Dec. 2020. doi:10.14710/jgundip.2021.29624.

A. T. Monteiro et al., “Remote sensing of vegetation and soil moisture content in Atlantic humid mountains with Sentinel-1 and 2 satellite sensor data,” Ecological Indicators, vol. 163, p. 112123, Jun. 2024, doi: 10.1016/j.ecolind.2024.112123.

A. Octaviana, Y. Prasetyo, and F. J. Amarrohman, " Analisis Perubahan Nilai Total Suspended Solid Tahun 2016 Dan 2019 Menggunakan Citra Sentinel 2a (Studi Kasus : Banjir Kanal Timur, Semarang)," Jurnal Geodesi Undip, vol. 9, no. 2, pp. 167-176, Apr. 2020. doi: 10.14710/jgundip.2020.27178.

S. N. Syaiful, M. Helmi, S. Widada, R. Widiaratih, P. Subardjo, and A. A. D. Suryoputro, “Analisis Digital Citra Satelit Worldview-2 untuk Ekstraksi Kedalaman Perairan Laut di Sebagian Perairan Pulau Parang, Kepulauan Karimunjawa, Provinsi Jawa Tengah,” Indonesian Journal of Oceanography, vol. 1, no. 1, pp. 36–43, Nov. 2019, doi:10.14710/ijoce.v1i1.6262.

W. Arifin, F. Febriandi, and T. Triyatno, “Pemetaan Kedalaman Perairan Danau Maninjau Dengan Algoritma Empirical Bathymetry Method Pada Citra Sentinel 2A,” El-Jughrafiyah, vol. 1, no. 1, p. 29, Aug. 2021, doi: 10.24014/jej.v1i1.14038.

E. J. Hochberg, S. Andrefouet, and M. R. Tyler, “Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 7, pp. 1724–1729, Jul. 2003, doi: 10.1109/tgrs.2003.815408.

J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note: Simple and robust removal of sun glint for mapping shallow‐water benthos,” International Journal of Remote Sensing, vol. 26, no. 10, pp. 2107–2112, May 2005, doi: 10.1080/01431160500034086.

D. R. Lyzenga, “Passive remote sensing techniques for mapping water depth and bottom features,” Applied Optics, vol. 17, no. 3, p. 379, Feb. 1978, doi: 10.1364/ao.17.000379.

E. C. Geyman and A. C. Maloof, “A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of Variable Bottom Type,” Earth and Space Science, vol. 6, no. 3, pp. 527–537, Mar. 2019, doi: 10.1029/2018ea000539.

L. Meliala, W. A. Wibowo, and J. Amalia, “Satellite Derived Bathymetry on Shallow Reef Platform: A Preliminary Result from Semak Daun, Seribu Islands, Java Sea, Indonesia,” KnE Engineering, Dec. 2019, doi: 10.18502/keg.v4i3.5849.

B. Gabr, M. Ahmed, and Y. Marmoush, “PlanetScope and Landsat 8 Imageries for Bathymetry Mapping,” Journal of Marine Science and Engineering, vol. 8, no. 2, p. 143, Feb. 2020, doi:10.3390/jmse8020143.

K. T. Setiawan et al., “Utilization Of Semi-Analytical Methods For Determining Batimetry Using High Resolution Satellite Images,” J. Penginderaan Jauh dan Pengolah. Data Citra Digit., vol. 18, no. 1, pp. 1–13, 2021.

A. Kartikasari, T. Pristianto, R. Hanintyo, E. E. Ampou, T. A. Wibawa, And B. B. Borneo, “Representative benthic habitat mapping on Lovina coral reefs in Northern Bali, Indonesia,” Biodiversitas Journal of Biological Diversity, vol. 22, no. 11, Oct. 2021, doi:10.13057/biodiv/d221108.

F. Muhtar, A. Armijon, F. Murdapa, and R. Fadly, “Analisa Luasan Terumbu Karang Di Perairan Pulau Tegal Lampung Dengan Teknologi Penginderaan Jauh,” JGE (Jurnal Geofisika Eksplorasi), vol. 5, no. 2, pp. 141–153, Jan. 2020, doi: 10.23960/jge.v5i2.29.

E. Evagorou, A. Argyriou, N. Papadopoulos, C. Mettas, G. Alexandrakis, and D. Hadjimitsis, “Evaluation of Satellite-Derived Bathymetry from High and Medium-Resolution Sensors Using Empirical Methods,” Remote Sensing, vol. 14, no. 3, p. 772, Feb. 2022, doi: 10.3390/rs14030772.

H. Hossen, M. Khairy, S. Ghaly, A. Scozzari, A. Negm, and M. Elsahabi, “Bathymetric and Capacity Relationships Based on Sentinel-3 Mission Data for Aswan High Dam Lake, Egypt,” Water, vol. 14, no. 5, p. 711, Feb. 2022, doi: 10.3390/w14050711.

C. Cahalane, A. Magee, X. Monteys, G. Casal, J. Hanafin, and P. Harris, “A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry,” Remote Sensing of Environment, vol. 233, p. 111414, Nov. 2019, doi:10.1016/j.rse.2019.111414.

T. Prayoga and L. Sari Barus, “Analisis Penentuan Pembangunan Dermaga Berdasarkan Analisis Citra Sentinel 2a di Perairan Delta Wulan Kota Pesisir Demak,” Jurnal Indonesia Sosial Teknologi, vol. 2, no. 11, pp. 2069–2081, Nov. 2021, doi: 10.36418/jist.v2i11.276.

Z. Duan, S. Chu, L. Cheng, C. Ji, M. Li, and W. Shen, “Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters,” Optics Express, vol. 30, no. 3, p. 3238, Jan. 2022, doi: 10.1364/oe.444557.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).