Accelerating Sustainability Environment: Understanding Electric Vehicles (EVs) Adoption with Expanded Technology Acceptance Model (TAM)

Agus Salim (1), Syafri (2), Nasrullah (3)
(1) Department of Urban and Regional Planning, Universitas Bosowa, Makassar, South Sulawesi, 90231, Indonesia
(2) Department of Urban and Regional Planning, Universitas Bosowa, Makassar, South Sulawesi, 90231, Indonesia
(3) Department of Architectural, Universitas Bosowa, Makassar, South Sulawesi, 90231, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Salim, Agus, et al. “Accelerating Sustainability Environment: Understanding Electric Vehicles (EVs) Adoption With Expanded Technology Acceptance Model (TAM)”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 2, Apr. 2024, pp. 629-40, doi:10.18517/ijaseit.14.2.19996.
This research endeavors to implement and evaluate an expanded version of the TAM by incorporating perceived risk and utilizing the consolidative framework of beliefs-attitude-intention. This approach aims to gain insights into and forecast consumers' inclination towards adopting EVs. This study delves into the various factors that impact the uptake of electric vehicles, employing a purposive sampling strategy to target individuals aged 17 and above with a valid driving license and owning EVs. After a rigorous screening process, 247 out of 400 responses were analyzed. The survey comprised two sections: the first gathering demographic and vehicle ownership details, and the second assessing six cognitive dimensions related to EV adoption, including PEOU, PEU, PER, ATU, and AIU to adopt EV technology. Utilizing SPSS and AMOS software for data examination, the study applied SEM analysis to investigate the relationships between these dimensions with Maximum Likelihood Estimation. The research identifies the significant impact of perceived risks on adoption intentions, emphasizing the need for strategies to mitigate these apprehensions, especially in emerging markets like Indonesia. The findings underscore the importance of holistic approaches in promoting EV adoption, which involve highlighting the benefits and addressing potential barriers and concerns that consumers may have. By effectively managing perceptions of usefulness, ease of use, and risks, stakeholders can work towards fostering a more positive attitude towards EV technology and ultimately encouraging greater adoption of sustainable transportation options.

M. I. H. Soiket, A. O. Oni, and A. Kumar, “The development of a process simulation model for energy consumption and greenhouse gas emissions of a vapor solvent-based oil sands extraction and recovery process,” Energy, vol. 173, pp. 799–808, 2019, doi: 10.1016/j.energy.2019.02.109.

A. O. Oni, I. C. Toro Monsalve, and A. Kumar, “The development of life cycle greenhouse gas emission footprints of novel pathways for the solvent-assisted and solvent-electromagnetic heating oil sands extraction processes,” Fuel, vol. 346, p. 128399, 2023, doi:10.1016/j.fuel.2023.128399.

S. M. Hafram, S. Valery, and A. H. Hasim, “Calibrating and validation microscopic traffic simulation models VISSIM for enhanced highway capacity planning,” Int. J. Eng. Trans. B Appl., vol. 36, no. 8, pp. 1509–1519, 2023, doi: 10.5829/ije.2023.36.08b.11.

V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and climate change: Global and regional perspectives,” Atmos. Environ., vol. 43, no. 1, pp. 37–50, 2009, doi: 10.1016/j.atmosenv.2008.09.063.

K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” in Advances in Carbon Capture: Methods, Technologies and Applications, Elsevier, 2020, pp. 3–28.

A. J. Patandean and A. H. Hasim, “Geophysical Exploration in Hot Springs Region Soppeng Regency, Indonesia,” Journal of Physics: Conference Series, vol. 1028, no. 1. p. 12197, 2018, doi:10.1088/1742-6596/1028/1/012197.

L. Liu, K. Wang, S. Wang, R. Zhang, and X. Tang, “Assessing energy consumption, CO2 and pollutant emissions and health benefits from China’s transport sector through 2050,” Energy Policy, vol. 116, pp. 382–396, 2018, doi: 10.1016/j.enpol.2018.02.019.

R. Quadrelli and S. Peterson, “The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion,” Energy Policy, vol. 35, no. 11, pp. 5938–5952, 2007, doi: 10.1016/j.enpol.2007.07.001.

S. Solaymani, “CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector,” Energy, vol. 168, pp. 989–1001, 2019, doi: 10.1016/j.energy.2018.11.145.

N. Rajabi Kouyakhi, “CO2 emissions in the Middle East: Decoupling and decomposition analysis of carbon emissions, and projection of its future trajectory,” Sci. Total Environ., vol. 845, p. 157182, 2022, doi:10.1016/j.scitotenv.2022.157182.

L. A. R. Umali, I. C. Recto, R. S. Lansangan, L. D. G. Torres, and E. R. Basilio, “Modified Tricycles as Public Transport during Tidal Flooding Events: The Case of Tikling in Hagonoy, Bulacan, Philippines,” Int. J. Environ. Eng. Educ., vol. 5, no. 2, pp. 45–55, 2023, doi: 10.55151/ijeedu.v5i2.102.

M. Ichsan Ali, A. Hafid Hasim, and M. Raiz Abidin, “Monitoring the built-up area transformation using urban index and normalized difference built-up index analysis,” Int. J. Eng. Trans. B Appl., vol. 32, no. 5, pp. 647–653, 2019, doi: 10.5829/ije.2019.32.05b.04.

Ronny, M. I. Arif, and H. B. Notobroto, “Water Pollution Index: Measurement of Shallow Well Water Quality in Urban Areas,” Int. J. Environ. Eng. Educ., vol. 1, no. 3, pp. 75–81, 2019.

A. Al-Sarraj, H. T. Salloom, and S. Z. Oleiwi, “Reviewing Energy Efficiency with the Development of Luminescent Solar Panels,” Int. J. Environ. Eng. Educ., vol. 2, no. 2, pp. 1–6, 2020, doi:10.55151/ijeedu.v2i2.28.

N. Bhalerao and S. Metkar, “The Renewable Energy: Environmentally Friendly Algae Biofuel,” Int. J. Environ. Eng. Educ., vol. 2, no. 3, pp. 13–21, Dec. 2020, doi: 10.5281/zenodo.4309022.

G. Schuitema, J. Anable, S. Skippon, and N. Kinnear, “The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles,” Transp. Res. Part A Policy Pract., vol. 48, pp. 39–49, 2013, doi: 10.1016/j.tra.2012.10.004.

M. Coffman, P. Bernstein, and S. Wee, “Electric vehicles revisited: a review of factors that affect adoption,” Transp. Rev., vol. 37, no. 1, pp. 79–93, 2017, doi: 10.1080/01441647.2016.1217282.

M. R. Hasrul, M. J. Rahman, A. R. A. P. Helmy, A. Y. Cheng, and M. Ahsan, “Exploring Research Trends and Themes in Intelligent Transportation Systems in the Last 10 Years (2014–2023),” Int. J. Environ. Eng. Educ., vol. 5, no. 3, pp. 141–153, 2023.

R. Buehler, J. Pucher, and A. Altshuler, “Vienna’s path to sustainable transport,” Int. J. Sustain. Transp., vol. 11, no. 4, pp. 257–271, 2017, doi: 10.1080/15568318.2016.1251997.

M. Burgess, N. King, M. Harris, and E. Lewis, “Electric vehicle drivers’ reported interactions with the public: Driving stereotype change?,” Transp. Res. Part F Traffic Psychol. Behav., vol. 17, pp. 33–44, 2013, doi: 10.1016/j.trf.2012.09.003.

Z. Y. She, Qing Sun, J. J. Ma, and B. C. Xie, “What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China,” Transp. Policy, vol. 56, pp. 29–40, 2017, doi: 10.1016/j.tranpol.2017.03.001.

C. A. Klöckner, “The dynamics of purchasing an electric vehicle - A prospective longitudinal study of the decision-making process,” Transp. Res. Part F Traffic Psychol. Behav., vol. 24, pp. 103–116, 2014, doi: 10.1016/j.trf.2014.04.015.

C. A. Klöckner, A. Nayum, and M. Mehmetoglu, “Positive and negative spillover effects from electric car purchase to car use,” Transp. Res. Part D Transp. Environ., vol. 21, pp. 32–38, 2013, doi: 10.1016/j.trd.2013.02.007.

T. Fontes, V. Costa, M. C. Ferreira, L. Shengxiao, P. Zhao, and T. G. Dias, “Mobile payments adoption in public transport,” Transp. Res. Procedia, vol. 24, pp. 410–417, 2017, doi:10.1016/j.trpro.2017.05.093.

R. Ozaki and K. Sevastyanova, “Going hybrid: An analysis of consumer purchase motivations,” Energy Policy, vol. 39, no. 5, pp. 2217–2227, 2011, doi: 10.1016/j.enpol.2010.04.024.

K. Y. Bjerkan, T. E. Nørbech, and M. E. Nordtømme, “Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway,” Transp. Res. Part D Transp. Environ., vol. 43, pp. 169–180, 2016, doi:10.1016/j.trd.2015.12.002.

Z. Rezvani, J. Jansson, and J. Bodin, “Advances in consumer electric vehicle adoption research: A review and research agenda,” Transp. Res. Part D Transp. Environ., vol. 34, pp. 122–136, 2015, doi:10.1016/j.trd.2014.10.010.

N. Wang, L. Tang, and H. Pan, “Analysis of public acceptance of electric vehicles: An empirical study in Shanghai,” Technol. Forecast. Soc. Change, vol. 126, pp. 284–291, 2018, doi:10.1016/j.techfore.2017.09.011.

A. H. Hasim, L. B. Said, and M. Hafram, “Have a Personal Vehicle: Really Need or Simply Want?,” International Journal of Environment, Engineering and Education, vol. 1, no. 1. pp. 7–16, 2019, doi:10.55151/ijeedu.v1i1.8.

L. V. White and N. D. Sintov, “You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions,” Transp. Res. Part A Policy Pract., vol. 99, pp. 94–113, 2017, doi: 10.1016/j.tra.2017.03.008.

N. Berkeley, D. Jarvis, and A. Jones, “Analysing the take up of battery electric vehicles: An investigation of barriers amongst drivers in the UK,” Transp. Res. Part D Transp. Environ., vol. 63, pp. 466–481, 2018, doi: 10.1016/j.trd.2018.06.016.

A. Ajanovic and R. Haas, “Electric vehicles: solution or new problem?,” Environ. Dev. Sustain., vol. 20, pp. 7–22, 2018, doi:10.1007/s10668-018-0190-3.

N. Shanmugavel, C. Alagappan, and J. Balakrishnan, “Acceptance of electric vehicles: A dual-factor approach using social comparison theory and technology acceptance model,” Res. Transp. Bus. Manag., vol. 45, p. 100842, 2022, doi: 10.1016/j.rtbm.2022.100842.

N. Wang, H. Tian, S. Zhu, and Y. Li, “Analysis of public acceptance of electric vehicle charging scheduling based on the technology acceptance model,” Energy, vol. 258, p. 124804, 2022, doi:10.1016/j.energy.2022.124804.

F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Q., pp. 319–340, 1989.

X. He, W. Zhan, and Y. Hu, “Consumer purchase intention of electric vehicles in China: The roles of perception and personality,” J. Clean. Prod., vol. 204, pp. 1060–1069, 2018, doi:10.1016/j.jclepro.2018.08.260.

M. Featherman, S. (Jasper) Jia, C. B. Califf, and N. Hajli, “The impact of new technologies on consumers beliefs: Reducing the perceived risks of electric vehicle adoption,” Technol. Forecast. Soc. Change, vol. 169, p. 120847, 2021, doi: 10.1016/j.techfore.2021.120847.

M. K. Kim, J. Oh, J. H. Park, and C. Joo, “Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports,” Energy, vol. 159, pp. 799–809, 2018, doi: 10.1016/j.energy.2018.06.064.

M. Fishbein and I. Ajzen, Belief, attitude, intention and behavior: An introduction to theory and research. 1975.

I. Ajzen and M. Fishbein, “Understanding attitudes and predicting social behavior,” Englewood Cliffs, NJ Prentice-Hall, 1980.

A. Bhattacherjee, “Understanding information systems continuance: An expectation-confirmation model,” MIS Q., pp. 351–370, 2001.

V. Venkatesh and F. D. Davis, “A theoretical extension of the technology acceptance model: Four longitudinal field studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000.

I. Ajzen, “The theory of planned behavior,” Organ. Behav. Hum. Decis. Process., vol. 50, no. 2, pp. 179–211, 1991.

I. Benbasat and H. Barki, “Quo vadis TAM?,” J. Assoc. Inf. Syst., vol. 8, no. 4, p. 7, 2007.

M. I. Ali, “The Consequences of Illegal Mining in the Environment: Perspectives Behavioral, Knowledge and Attitude,” Int. J. Environ. Eng. Educ., vol. 1, no. 1, pp. 25–33, 2019, doi:10.55151/ijeedu.v1i1.10.

P. Legris, J. Ingham, and P. Collerette, “Why do people use information technology? A critical review of the technology acceptance model,” Inf. Manag., vol. 40, no. 3, pp. 191–204, 2003, doi:10.1016/S0378-7206(01)00143-4.

K. Mathieson, E. Peacock, and W. W. Chin, “Extending the Technology Acceptance Model: The Influence of Perceived User Resources,” Data Base Adv. Inf. Syst., vol. 32, no. 3, pp. 86–112, 2001, doi: 10.1145/506724.506730.

O. Egbue, S. Long, and V. A. Samaranayake, “Mass deployment of sustainable transportation: evaluation of factors that influence electric vehicle adoption,” Clean Technol. Environ. Policy, vol. 19, no. 7, pp. 1927–1939, 2017, doi: 10.1007/s10098-017-1375-4.

G. Xu, S. Wang, and D. Zhao, “Transition to sustainable transport: understanding the antecedents of consumer’s intention to adopt electric vehicles from the emotional research perspective,” Environ. Sci. Pollut. Res., vol. 28, no. 16, pp. 20362–20374, 2021, doi:10.1007/s11356-020-12006-1.

V. Teeroovengadum, N. Heeraman, and B. Jugurnath, “Examining the antecedents of ICT adoption in education using an Extended Technology Acceptance Model (TAM),” Int. J. Educ. Dev. Using Inf. Commun. Technol., vol. 13, no. 3, pp. 4–23, 2017.

A. M. Idkhan and M. M. Idris, “The Impact of User Satisfaction in the Use of E-Learning Systems in Higher Education: A CB-SEM Approach,” Int. J. Environ. Eng. Educ., vol. 5, no. 3, pp. 100–110, 2023.

A. Padalia and T. Natsir, “End-User Computing Satisfaction (EUCS) Model: Implementation of Learning Management System (LMS) on Students Satisfaction at Universities,” Int. J. Environ. Eng. Educ., vol. 4, no. 3, pp. 100–107, 2022, doi: 10.55151/ijeedu.v4i3.72.

H. Zhang, “Structural Equation Modeling,” in Management for Professionals, vol. Part F525, Routledge, 2022, pp. 363–381.

J. E. Collier, Applied Structural Equation Modeling using AMOS: Basic to Advanced Techniques. Routledge, 2020.

E. Schumacker and G. Lomax, “A Beginner’s Guide to Structural Equation Modelling. 4th edtn.” London: Routledge, 2016.

J. Hong, Y. She, S. Wang, and M. Dora, “Impact of psychological factors on energy-saving behavior: Moderating role of government subsidy policy,” J. Clean. Prod., vol. 232, pp. 154–162, 2019, doi:10.1016/j.jclepro.2019.05.321.

J. Dunn, M. Slattery, A. Kendall, H. Ambrose, and S. Shen, “Circularity of Lithium-Ion Battery Materials in Electric Vehicles,” Environ. Sci. Technol., vol. 55, no. 8, pp. 5189–5198, 2021, doi:10.1021/acs.est.0c07030.

S. Wang, J. Wang, J. Li, J. Wang, and L. Liang, “Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter?,” Transp. Res. Part A Policy Pract., vol. 117, pp. 58–69, 2018, doi:10.1016/j.tra.2018.08.014.

T. Zhang, D. Tao, X. Qu, X. Zhang, R. Lin, and W. Zhang, “The roles of initial trust and perceived risk in public’s acceptance of automated vehicles,” Transp. Res. Part C Emerg. Technol., vol. 98, pp. 207–220, 2019, doi: 10.1016/j.trc.2018.11.018.

Y. H. Cheng and T. Y. Huang, “High speed rail passengers’ mobile ticketing adoption,” Transp. Res. Part C Emerg. Technol., vol. 30, pp. 143–160, 2013, doi: 10.1016/j.trc.2013.02.001.

V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS Q., pp. 425–478, 2003.

T. T. Haile and M. Kang, “Mobile augmented reality in electronic commerce: investigating user perception and purchase intent amongst educated young adults,” Sustain., vol. 12, no. 21, pp. 1–28, 2020, doi:10.3390/su12219185.

I. Vermeir and W. Verbeke, “Sustainable food consumption: Exploring the consumer ‘attitude - Behavioral intention’ gap,” J. Agric. Environ. Ethics, vol. 19, no. 2, pp. 169–194, 2006, doi:10.1007/s10806-005-5485-3.

D. Jaiswal and R. Kant, “Green purchasing behaviour: A conceptual framework and empirical investigation of Indian consumers,” J. Retail. Consum. Serv., vol. 41, pp. 60–69, 2018, doi:10.1016/j.jretconser.2017.11.008.

R. Lavuri, E. Jusuf, and A. Gunardi, “Green Sustainability: Factors Fostering and Behavioural Difference Between Millennial and Gen Z: Mediating Role of Green Purchase Intention,” Ekon. i Sr., vol. 76, no. 1, pp. 8–38, 2021, doi: 10.34659/2021/1/1.

I. Ajzen and N. G. Cote, “Attitudes and the prediction of behavior,” Attitudes Attitude Chang., vol. 13, pp. 289–312, 2011, doi:10.4324/9780203838068.

M. Fishbein and I. Ajzen, “The influence of attitudes on behavior,” Handb. attitudes, pp. 173–222, 2005.

D. Liu, Y. Song, L. Li, H. Liao, and Y. Peng, “On-line life cycle health assessment for lithium-ion battery in electric vehicles,” J. Clean. Prod., vol. 199, pp. 1050–1065, 2018, doi: 10.1016/j.jclepro.2018.06.182.

S. Khaleghi, Y. Firouz, J. Van Mierlo, and P. Van den Bossche, “Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators,” Appl. Energy, vol. 255, p. 113813, 2019, doi: 10.1016/j.apenergy.2019.113813.

Z. A. Lashari, J. Ko, and J. Jang, “Consumers’ intention to purchase electric vehicles: Influences of user attitude and perception,” Sustain., vol. 13, no. 12, p. 6778, 2021, doi: 10.3390/su13126778.

J. F. Hair Jr, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, “Partial least squares structural equation modeling (PLS-SEM) using R: A workbook.” Springer Nature, 2021.

J. F. Hair, W. C. Black, B. J. Babin, R. E. Anderson, and R. Tatham, Multivariate Data Analysis. Hampshire, United Kingdom: Cengage Learning EMEA, 2019.

J. Wu, H. Liao, J. W. Wang, and T. Chen, “The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China,” Transp. Res. Part F Traffic Psychol. Behav., vol. 60, pp. 37–46, 2019, doi: 10.1016/j.trf.2018.09.029.

L. Han, S. Wang, D. Zhao, and J. Li, “The intention to adopt electric vehicles: Driven by functional and non-functional values,” Transp. Res. Part A Policy Pract., vol. 103, pp. 185–197, 2017, doi:10.1016/j.tra.2017.05.033.

C. Peng, Z. OuYang, and Y. Liu, “Understanding bike sharing use over time by employing extended technology continuance theory,” Transp. Res. Part A Policy Pract., vol. 124, pp. 433–443, 2019, doi:10.1016/j.tra.2019.04.013.

T. A. Whittaker and R. E. Schumacker, A Beginner’s Guide to Structural Equation Modeling. Routledge, 2022.

R. B. Kline, Principles and practice of structural equation modeling. Guilford publications, 2023.

J. C. Anderson and D. W. Gerbing, “Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach,” Psychol. Bull., vol. 103, no. 3, pp. 411–423, 1988, doi: 10.1037/0033-2909.103.3.411.

G. D. Garson, Structural Equation Modeling, Blue Book. Asheboro, North Corolina: Statistical Associates Publishing, 2012.

K. G. Jöreskog and D. Sörbom, LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International, 1993.

G. D. Garson, Partial Least Squares: Regression & structural equation modeling. Asheboro, USA: Statistical Publishing Associates, 2016.

J. J. Hox and T. M. Bechger, “An introduction to structural equation modeling,” 2007.

B. Wheaton, B. Muthen, D. F. Alwin, and G. F. Summers, “Assessing Reliability and Stability in Panel Models,” Sociol. Methodol., vol. 8, p. 84, 1977, doi: 10.2307/270754.

E. G. Carmines, “Analyzing models with unobserved variables,” Soc. Meas. Curr. issues, vol. 80, 1981.

R. E. Schumacker and R. G. Lomax, A Beginner’s Guide to Structural Equation Modeling, 3rd ed. Mahwah, NJ: Lawrence Erlbaum Associates, 2015.

J. S. Tanaka and G. J. Huba, “A general coefficient of determination for covariance structure models under arbitrary GLS estimation,” Br. J. Math. Stat. Psychol., vol. 42, no. 2, pp. 233–239, 1989.

J. H. Steiger and J. C. Lind, “Statistically based tests for the number of common factors,” 1980.

M. W. Browne and R. Cudeck, “Alternative ways of assessing model fit,” Sage Focus Ed., vol. 154, p. 136, 1993.

L. J. Williams and E. O’Boyle Jr, “The myth of global fit indices and alternatives for assessing latent variable relations,” Organ. Res. Methods, vol. 14, no. 2, pp. 350–369, 2011.

F. Chen, P. J. Curran, K. A. Bollen, J. Kirby, and P. Paxton, “An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models,” Sociol. Methods Res., vol. 36, no. 4, pp. 462–494, 2008.

L. T. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives,” Struct. Equ. Model., vol. 6, no. 1, pp. 1–55, 1999, doi:10.1080/10705519909540118.

L. R. Tucker and C. Lewis, “A reliability coefficient for maximum likelihood factor analysis,” Psychometrika, vol. 38, no. 1, pp. 1–10, 1973.

P. M. Bentler and L. T. Hu, “Evaluating model fit,” in Structural equation modeling: Concepts, issues, and applications, Thousand Oaks, CA: SAGE Publications, 1995, pp. 76–99.

P. M. Bentler, “SEM with simplicity and accuracy,” J. Consum. Psychol., vol. 20, no. 2, pp. 215–220, 2010, doi:10.1016/j.jcps.2010.03.002.

P. Wood, Confirmatory Factor Analysis for Applied Research, 2nd ed., vol. 62, no. 1. New York: The Guilford Press, 2008.

K. A. Bollen, “A new incremental fit index for general structural equation models,” Sociol. Methods Res., vol. 17, no. 3, pp. 303–316, 1989.

S. A. Mulaik, L. R. James, J. Van Alstine, N. Bennett, S. Lind, and C. D. Stilwell, “Evaluation of goodness-of-fit indices for structural equation models.,” Psychol. Bull., vol. 105, no. 4, pp. 430–445, 1989.

L. James, S. Mulaik, and J. M. Brett, Causal analysis: Assumptions, models, and data. Beverly Hills: Sage publications, 1982.

W. R. Dillon, K. A. Bollen, and J. S. Long, Testing Structural Equation Models, vol. 33, no. 3. Sage, 1996.

M. S. Khine, Application of structural equation modeling in educational research and practice, 7th ed. Rotterdam, Netherlands: Sense Publishers, 2013.

R. H. Hoyle, Structural Equation Modeling : Concepts, Issues, and Applications. Thousand Oaks, California: SAGE Publications, Inc., 1995.

R. P. Bagozzi and Y. Yi, “On the evaluation of structural equation models,” J. Acad. Mark. Sci., vol. 16, no. 1, pp. 74–94, 1988.

T. Lieven and B. Hügler, “Did electric vehicle sales skyrocket due to increased environmental awareness while total vehicle sales declined during COVID-19?,” Sustain., vol. 13, no. 24, p. 13839, 2021, doi:10.3390/su132413839.

K. Shalender and N. Sharma, “Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India,” Environ. Dev. Sustain., vol. 23, no. 1, pp. 665–681, 2021, doi:10.1007/s10668-020-00602-7.

M. S. Featherman and P. A. Pavlou, “Predicting e-services adoption: A perceived risk facets perspective,” Int. J. Hum. Comput. Stud., vol. 59, no. 4, pp. 451–474, 2003, doi: 10.1016/S1071-5819(03)00111-3.

T. Roselius, “Consumer Rankings of Risk Reduction Methods,” J. Mark., vol. 35, no. 1, p. 56, 1971, doi: 10.2307/1250565.

A. A. Alalwan, Y. K. Dwivedi, N. P. P. Rana, and M. D. Williams, “Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy,” J. Enterp. Inf. Manag., vol. 29, no. 1, pp. 118–139, 2016, doi: 10.1108/JEIM-04-2015-0035.

A. M. Baabdullah, A. A. Alalwan, N. P. Rana, H. Kizgin, and P. Patil, “Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model,” Int. J. Inf. Manage., vol. 44, pp. 38–52, 2019.

S. K. Roy, M. S. Balaji, A. Kesharwani, and H. Sekhon, “Predicting Internet banking adoption in India: a perceived risk perspective,” J. Strateg. Mark., vol. 25, no. 5–6, pp. 418–438, 2017, doi:10.1080/0965254X.2016.1148771.

V. Venkatesh and S. Goyal, “Expectation disconfirmation and technology adoption: polynomial modeling and response surface analysis,” MIS Q., pp. 281–303, 2010.

S. Wang, J. Fan, D. Zhao, S. Yang, and Y. Fu, “Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model,” Transportation (Amst)., vol. 43, no. 1, pp. 123–143, 2016, doi: 10.1007/s11116-014-9567-9.

S. Wang, J. Li, and D. Zhao, “The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China,” Transp. Res. Part A Policy Pract., vol. 105, pp. 14–26, 2017, doi:10.1016/j.tra.2017.08.013.

M. K. Hidrue, G. R. Parsons, W. Kempton, and M. P. Gardner, “Willingness to pay for electric vehicles and their attributes,” Resour. Energy Econ., vol. 33, no. 3, pp. 686–705, 2011, doi:10.1016/j.reseneeco.2011.02.002.

J. Zhang, S. Xu, Z. He, C. Li, and X. Meng, “Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives,” Sustain., vol. 14, no. 10, p. 5777, 2022, doi: 10.3390/su14105777.

S. Carley, R. M. Krause, B. W. Lane, and J. D. Graham, “Intent to purchase a plug-in electric vehicle: A survey of early impressions in large US cites,” Transp. Res. Part D Transp. Environ., vol. 18, no. 1, pp. 39–45, 2013, doi: 10.1016/j.trd.2012.09.007.

F. Siraj and P. Mehra, “The influence of financial incentives and other socio-economic factors on two-wheeler EV adoption in the NCR region,” Sustain. Growth Glob. Soc. Dev. Compet. Econ., vol. 68, pp. 248–279, 2023, doi: 10.4018/978-1-6684-8810-2.ch013.

X. Luo, H. Li, J. Zhang, and J. P. Shim, “Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services,” Decis. Support Syst., vol. 49, no. 2, pp. 222–234, 2010, doi:10.1016/j.dss.2010.02.008.

P. Tiwari, S. K. Tiwari, and A. Gupta, “Examining the Impact of Customers’ Awareness, Risk and Trust in M-Banking Adoption,” FIIB Bus. Rev., vol. 10, no. 4, pp. 413–423, 2021, doi:10.1177/23197145211019924.

O. Egbue and S. Long, “Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions,” Energy Policy, vol. 48, pp. 717–729, 2012, doi: 10.1016/j.enpol.2012.06.009.

F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance of computer technology: a comparison of two theoretical models,” Manage. Sci., vol. 35, no. 8, pp. 982–1003, 1989.

K. Degirmenci and M. H. Breitner, “Consumer purchase intentions for electric vehicles: Is green more important than price and range? – Authors’ reply,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 846–848, 2018, doi: 10.1016/j.trd.2017.07.024.

M. C. Policarpo and E. C. Aguiar, “How self-expressive benefits relate to buying a hybrid car as a green product,” J. Clean. Prod., vol. 252, p. 119859, 2020, doi: 10.1016/j.jclepro.2019.119859.

G. Xu, S. Wang, J. Li, and D. Zhao, “Moving towards sustainable purchase behavior: examining the determinants of consumers’ intentions to adopt electric vehicles,” Environ. Sci. Pollut. Res., vol. 27, no. 18, pp. 22535–22546, 2020, doi: 10.1007/s11356-020-08835-9.

T. Zhang et al., “Automated vehicle acceptance in China: Social influence and initial trust are key determinants,” Transp. Res. Part C Emerg. Technol., vol. 112, pp. 220–233, 2020, doi: 10.1016/j.trc.2020.01.027.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).