Nannofossil Diversity and Climate Change of Rembang Zone, North East Java Basin

Siti Umiyatun Choiriah (1), Dwi Fitri Yudiantoro (2), Rubiyanto Kapid (3)
(1) Department of Geology Engineering, Faculty of Mineral Technology, UPN “Veteran” Yogyakarta, Yogyakarta, Indonesia
(2) Department of Geology Engineering, Faculty of Mineral Technology, UPN “Veteran” Yogyakarta, Yogyakarta, Indonesia
(3) Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
[1]
S. U. Choiriah, D. F. Yudiantoro, and R. Kapid, “Nannofossil Diversity and Climate Change of Rembang Zone, North East Java Basin”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 215–222, Feb. 2025.
This study was conducted in the Blora Regency District. This study aims to comprehensively examine the diversity of nannofossil species and their significance to climate change from the Pliocene to the Pleistocene. The rock sample was taken by spot sampling and prepared using the smear slide method. The geology area is composed of lithology containing much carbonate from the Wonocolo, Ledok, Mundu, Selorejo, and Lidah formations. The results of nannofossil analysis showed that in the Jiken area, 17 genera and 54 species were identified, Sambong had eight genera and 41 species, and Kedewan had 19 genera and 51 species. The study area is (Late Miocene/Pliocene to Pleistocene). Age of Jiken is (CNM11-CNPL7) or (10.79Ma-1.71Ma); Sambong (CNM13-CNPL8) or (9.65Ma-1.93Ma) and Kedewan (CNM14-CNPL9 or 8.80M -1.14Ma). The Diversity Index (H') and Evenness/Homogeneity Index (E) for Jiken are H' (2.551) and E (0.422), Sambong area is H' (2.280) and E (0.377) and Kedewan (H'2.344 and E 0.388). The index ranges from H'(2.280-2.251), which means small to medium diversity and moderate community stability; for index E (0.377-0.42), the nannfossil population is small to medium. These results indicate that the dominance of species abundance and diversity increased during the Miocene-Pliocene and decreased during the Pleistocene. Climate change has had a significant impact on the life of nannofossils; it has been shown that during the Pliocene (warm period), the number of nannofossils showed high diversity and abundance, and during the Pleistocene (cold), it resulted in a decrease in diversity and abundance.

M. Penot, J. B. Dacks, B. Read, and R. G. Dorrell, “Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae,” Appl. Phycol., vol. 3, no. 1, pp. 340–359, Dec. 2022, doi: 10.1080/26388081.2022.2103732.

I. Raffi and J. Backman, “The role of calcareous nannofossils in building age models for Cenozoic marine sediments: a review,” Rend. Lincei. Sci. Fis. e Nat., vol. 33, no. 1, pp. 25–38, Mar. 2022, doi:10.1007/s12210-022-01048-x.

M. Bordiga, C. Lupi, R. Sacchi, P. Ferretti, S. J. Crowhurst, and M. Cobianchi, “Eccentricity signal in the nannofossil time-series across the Mid-Pleistocene Transition in the northwestern Pacific Ocean (ODP Site 1209),” Quat. Sci. Rev., vol. 316, p. 108253, Sep. 2023, doi:10.1016/j.quascirev.2023.108253.

P. R. Bown, J. A. Lees, and J. R. Young, “Calcareous nannoplankton evolution and diversity through time,” Coccolithophores, pp. 481–508, 2004, doi: 10.1007/978-3-662-06278-4_18.

M. Widhiyatmoko, Vijaya Isnaniawardhani, and Moh Heri Hermiyanto Zajuli, “Distribusi Nannofosil dan Foraminifera pada Batas Pliosen-Plistosen Formasi Batilembuti di Pulau Yamdena, Provinsi Maluku dan Relevansinya dengan Tektonik Regional,” J. Geol. dan Sumberd. Miner., vol. 24, no. 1, pp. 39–50, Feb. 2023, doi:10.33332/jgsm.geologi.v24i1.737.

C. Lancis, J.-E. Tent-Manclús, and J.-A. Flores, “Origin and evolution of the Neogene calcareous nannofossil Ceratolithus,” Mar. Micropaleontol., vol. 186, p. 102310, Jan. 2024, doi:10.1016/j.marmicro.2023.102310.

U. Ciołko and E. Gaździcka, “Calcareous nannofossil biostratigraphy and paleogeographic significance in the lower Maastrichtian of the Miechów Trough (southern Poland),” Acta Geol. Pol., vol. 72, no. 3, pp. 331–352, 2022, doi: 10.24425/agp.2022.140428.

S. Senemari and A. Mejía-Molina, “Nannoplankton and 13C and 13O stable isotope stratigraphy record of the mid Cretaceous sequences, Zagros Basin (western Iran),” Mar. Pet. Geol., vol. 128, p. 105055, Jun. 2021, doi: 10.1016/j.marpetgeo.2021.105055.

S. Jan et al., “Impact of Climate Change on Marine Biodiversity: Current Challenges and Future Perspectives,” Proc. Pakistan Acad. Sci. Part B, vol. 60, no. 1, pp. 29–47, 2023, doi: 10.53560/PPASB(60-1)768.

C. A. Setyaningsih, D. Kurniadi, T. B. S. Rasantyo, I. Firdaus, and I. Prayitno, “Planktonic and benthic foraminiferal stable isotopes, SSTs and thermocline temperature, coccoliths and benthic foraminiferal assemblages, and productivity reconstr,” Simp. IATMI 2022, 2022.

A. Chakraborty, A. K. Ghosh, S. Saxena, R. Dey, and L. Roy, “Neogene biostratigraphy and paleoceanography of Andaman and Nicobar Basin: A reappraisal,” 2023, pp. 121–187. doi:10.1016/bs.sats.2023.08.005.

V. Isnaniawardhani, M. Rivaldy, Ismawan, R. I. Sophian, and A. S. Andyastiya, “The Miocene (25.2 – 5.6 million years ago) climate changes recorded by foraminifera and nannofossils assemblages in Bogor Basin, Western Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 575, no. 1, p. 012222, Oct. 2020, doi: 10.1088/1755-1315/575/1/012222.

M. late. Sam, B. Paul, J. T. Richard, D. Silvia, and V. Vivi, “Global record of ‘ghost’ nannofossils reveals plankton resilience to high CO2 and warming,” Science (80-. )., vol. 376, no. 6595, pp. 853–856, 2022, doi: 10.1126/science.abm7330.

M. Arundhathy, R. Jyothibabu, S. Santhikrishnan, K. J. Albin, S. Parthasarathi, and C. P. Rashid, “Coccolithophores: an environmentally significant and understudied phytoplankton group in the Indian Ocean,” Environ. Monit. Assess., vol. 193, no. 3, p. 144, Mar. 2021, doi: 10.1007/s10661-020-08794-1.

S. Bonomo et al., “Calcareous Nannofossil variability controlled by Milankovitch and sub-Milankovitch periodicity in the Monte San Nicola section (Gelasian GSSP / MIS 100–104),” Mar. Micropaleontol., vol. 192, p. 102397, Sep. 2024, doi:10.1016/j.marmicro.2024.102397.

A. Incarbona et al., “Middle-Late Pleistocene Eastern Mediterranean nutricline depth and coccolith preservation linked to Monsoon activity and Atlantic Meridional Overturning Circulation,” Glob. Planet. Change, vol. 217, p. 103946, Oct. 2022, doi:10.1016/j.gloplacha.2022.103946.

C. Yu, X. Su, X. Ding, J. Zhang, C. Tao, and S. Lv, “Calcareous nannofossil records and the migration of the Agulhas Return Current during the last 40 kyr,” Front. Earth Sci., vol. 12, May 2024, doi:10.3389/feart.2024.1322023.

N. Omar, T. McCann, A. I. Al-Juboury, M. A. Ustinova, and A. O. Sharezwri, “Early Jurassic–Early Cretaceous Calcareous Nannofossil Biostratigraphy and Geochemistry, Northeastern Iraqi Kurdistan: Implications for Paleoclimate and Paleoecological Conditions,” Geosciences, vol. 12, no. 2, p. 94, Feb. 2022, doi:10.3390/geosciences12020094.

A. Nyerges, Á. T. Kocsis, and J. Pálfy, “Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys),” Hist. Biol., vol. 33, no. 9, pp. 1443–1456, 2021, doi:10.1080/08912963.2019.1705295.

M. Olofsson and A. Wulff, “Looking back to the future—micro- and nanoplankton diversity in the Greenland Sea,” Mar. Biodivers., vol. 51, no. 4, 2021, doi: 10.1007/s12526-021-01204-w.

M. J. Razmjooei et al., “Revision of the Quaternary calcareous nannofossil biochronology of Arctic Ocean sediments,” Quat. Sci. Rev., vol. 321, p. 108382, Dec. 2023, doi:10.1016/j.quascirev.2023.108382.

C. M. Lowery, P. R. Bown, A. J. Fraass, and P. M. Hull, “Ecological Response of Plankton to Environmental Change: Thresholds for Extinction,” Annu. Rev. Earth Planet. Sci., vol. 48, pp. 403–429, 2020, doi: 10.1146/annurev-earth-081619-052818.

A. Chakraborty, A. K. Ghosh, and S. Saxena, “Neogene calcareous nannofossil biostratigraphy of the northern Indian Ocean: Implications for palaeoceanography and palaeoecology,” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 579, p. 110583, Oct. 2021, doi:10.1016/j.palaeo.2021.110583.

M. Dröllner et al., “Directly Dating Plio-Pleistocene Climate Change in the Terrestrial Record,” Geophys. Res. Lett., vol. 50, no. 8, pp. 1–10, 2023, doi: 10.1029/2023GL102928.

S. U. Choiriah, C. Prasetyadi, R. Kapid, and D. F. Yudiantoro, “Diversity model of Pliocene-Pleistocene nannofossil of Kendeng Zone,” IOP Conf. Ser. Earth Environ. Sci., vol. 212, no. 1, 2018, doi:10.1088/1755-1315/212/1/012038.

A. Anonim, “Peta Rupa Bumi Indonesia (RBI) dan Peta Kontur. Jawa Timur,” Badan Informasi Geospasial (BIG). [Online]. Available: https://www.indonesia-geospasial.com/search/label/BIG-RBI?&max-results=8.

A. V. Turchyn, H. J. Bradbury, K. Walker, and X. Sun, “Controls on the Precipitation of Carbonate Minerals Within Marine Sediments,” Front. Earth Sci., vol. 9, Feb. 2021, doi: 10.3389/feart.2021.618311.

S. Kanungo, J. Young, and G. Skowron, “Microfossils: Calcareous Nannoplankton (Nannofossils),” 2017, pp. 1–18. doi: 10.1007/978-3-319-02330-4_4-1.

E. Martini, “Standard Tertiary and Quaternary Calcareous Nannoplankton Biozonation,” in Nannofossil Biostratigraphy, Hutchinson Ross Publishing Company, 1971, pp. 264–307.

J. Backman, I. Raffi, D. Rio, E. Fornaciari, and H. Pälike, “Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes,” Newsletters Stratigr., vol. 45, no. 3, pp. 221–244, Nov. 2012, doi: 10.1127/0078-0421/2012/0022.

K. A. Nolan and J. E. Callahan, “Beachcomber Biology : The Shannon-Weiner Species Diversity Index This article reprinted from : Visit ABLE on the Web at :,” Ested Stud. Lab. Teach., vol. 27, no. January 2006, pp. 334–338, 2015.

I. Raffi, C. Agnini, J. Backman, and R. Catanzariti, “A Cenozoic calcareous nannofossil biozonation from low and middle latitudes : A synthesis,” vol. 36, no. 2, pp. 121–132, 2016.

C. E. Shannon and W. Weaver, “The Theory of Mathematical Communication,” Bell Syst. Tech. J., vol. 27, pp. 379–429, 1964.

S. U. Choiriah, C. Prasetyadi, D. F. Yudiantoro, R. Kapid, and N. A. Nurwantari, “Miocene to pleistocene biostratigraphy of Rembang Zone based on nannofossil, Nglebur River section, Blora, Central Java,” AIP Conf. Proc., vol. 2245, pp. 1–11, 2020, doi: 10.1063/5.0006851.

S. U. Choiriah, I. P. Haty, and E. Y. Kaesti, “Sedimentation Rate During Miocene to Pleistocene Related with Nannofossil Biostratigraphy, in Banyuurip, Kedewan, Rembang Zone, East Java Basin, Indonesia,” Indones. J. Geosci., vol. 10, no. 3, pp. 349–361, 2023, doi: 10.17014/ijog.10.3.349-361.

A. H. Satyana, “Subvolcanic Hydrocarbon Prospectivity of Java: Oppotunities and Challenges,” in Proc. Indonesian petrol. Assoc., 39th Ann. Conv., Jakarta: Indonesian Petroleum Association (IPA), 2015. doi: 10.29118/IPA.0.15.G.105.

J. Ivana, L. Supriatna, and T. R. P. Astuti, “Identification of Potential Groundwater Recharge Zone Using Remote Sensing and GIS in Upstream Cibeet Sub-watershed, Bogor, West Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 1111, no. 1, p. 012025, Dec. 2022, doi:10.1088/1755-1315/1111/1/012025.

E. S. Sitinjak, B. Sapiie, A. M. Ramdhan, A. N. Hidayati, Y. A. Azhari, and N. F. Adriyansyah, “Surface Geology Analysis on the Relationship between Fault Creep and Overpressure in Grobogan, Central Java, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1245, no. 1, p. 012019, Sep. 2023, doi: 10.1088/1755-1315/1245/1/012019.

H. W. K. Berghuis et al., “The eastern Kendeng Hills (Java, Indonesia) and the hominin-bearing beds of Mojokerto, a re-interpretation,” Quat. Sci. Rev., vol. 295, p. 107692, Nov. 2022, doi:10.1016/j.quascirev.2022.107692.

S. U. Choiriah, C. Prasetyadi, D. F. Yudiantoro, R. Kapid, and N. A. Nurwantari, “Miocene to Pleistocene Biostratigraphy of Rembang Zone based on nannofossil, Nglebur River section, Blora, Central Java,” AIP Conf. Proc., vol. 2245, pp. 1–11, 2020, doi: 10.1063/5.0006851.

V. C. Agusta, M. Hendrizan, S. Y. Cahyarini, D. A. Utami, and A. U. Nurhidayati, “Pliocene climate in Indonesia: a review,” IOP Conf. Ser. Earth Environ. Sci., vol. 789, no. 1, p. 012054, Jun. 2021, doi:10.1088/1755-1315/789/1/012054.

M. S. Omar et al., “Peatlands in Southeast Asia: A comprehensive geological review,” Earth-Science Rev., vol. 232, p. 104149, Sep. 2022, doi: 10.1016/j.earscirev.2022.104149.

Y. V. Vernyhorova et al., “The Miocene Climatic Optimum at the interface of epicontinental sea and large continent: A case study from the Middle Miocene of the Eastern Paratethys,” Mar. Micropaleontol., vol. 181, p. 102231, May 2023, doi: 10.1016/j.marmicro.2023.102231.

J. D. Schueth and T. J. Bralower, “The relationship between environmental change and the extinction of the nannoplankton Discoaster in the early Pleistocene,” Paleoceanography, vol. 30, no. 7, pp. 863–876, 2015, doi: 10.1002/2015PA002803.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).