Evaluating Machine Learning Models for Optimal Livestock Environment Prediction in Smart Farming Applications to Enhance Food Security
How to cite (IJASEIT) :
T. A. Naji, M. A. Teka, and E. A. Alemu, “The impact of watershed on household food security: A comparative analysis,” J. Agric. Food Res., vol. 15, no. January, p. 100954, 2024, doi:10.1016/j.jafr.2023.100954.
N. R. Abdul Halim, H. Hashim, S. Mutalib, and M. Abd Ghani, “Food safety regulations implementation and their impact on food security level in Malaysia: A review,” Int. Food Res. J., vol. 31, no. 1, pp. 20–31, Mar. 2024, doi: 10.47836/ifrj.31.1.02.
Y. Feng, C. Dong, and Q. Bao, “Impact of urbanization on forest ecological security in China,” Shengtai Xuebao, vol. 42, no. 7, pp. 2984–2994, 2022, doi: 10.5846/STXB202105241352.
J. Fanzo, B. de Steenhuijsen Piters, A. Soto-Caro, A. Saint Ville, M. Mainuddin, and J. Battersby, “Global and local perspectives on food security and food systems,” Commun. Earth Environ., vol. 5, no. 1, pp. 1–4, 2024, doi: 10.1038/s43247-024-01398-4.
R. Alfred et al., “Modelling and Forecasting Fresh Agro-Food Commodity Consumption Per Capita in Malaysia Using Machine Learning,” Mob. Inf. Syst., vol. 2022, 2022, doi:10.1155/2022/6106557.
X. Zhang, S. Sun, and S. Yao, “Influencing factors and spatiotemporal heterogeneity of livestock greenhouse gas emission: Evidence from the Yellow River Basin of China,” J. Environ. Manage., vol. 358, no. March, p. 120788, 2024, doi: 10.1016/j.jenvman.2024.120788.
V. Lavanya, A. D. Kannan, S. Kamaleshwaran, R. Nishanth, and S. M. Kamatchi, “Detecting Disease In Livestock and Recommending Medicines using Machine Learning,” Proc. 2nd Int. Conf. Edge Comput. Appl. ICECAA 2023, no. Icecaa, pp. 517–522, 2023, doi:10.1109/icecaa58104.2023.10212385.
R. Roy, M. M. Baral, S. K. Pal, S. Kumar, S. Mukherjee, and B. Jana, “Discussing the present, past, and future of Machine learning techniques in livestock farming: A systematic literature review,” 2022 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. COM-IT-CON 2022, vol. 1, no. May, pp. 179–183, 2022, doi: 10.1109/COM-IT-CON54601.2022.9850749.
K. S. Dhanalakshmi, J. S. Jeyanathan, K. C. Anjineyulu, K. M. Babu, M. Mahendra, and N. P. Reddy, “Cloud IoT based Poultry Environment Analysis System,” in Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 76–81. doi: 10.1109/icais56108.2023.10073851.
Y. A. Liani et al., “The Broiler Chicken Coop Temperature Monitoring Use Fuzzy Logic and LoRAWAN,” in Proceeding - ICERA 2021: 2021 3rd International Conference on Electronics Representation and Algorithm, Institute of Electrical and Electronics Engineers Inc., Jul. 2021, pp. 161–166. doi: 10.1109/icera53111.2021.9538771.
F. J. Adha, M. Gapar Md Johar, M. H. Alkawaz, A. Iqbal Hajamydeen, and L. Raya, “IoT based Conceptual Framework for Monitoring Poultry Farms,” in 2022 12th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 277–282. doi:10.1109/iscaie54458.2022.9794471.
A. Ur Rehman et al., “Implementation of an Intelligent Animal Monitoring System Using Wireless Sensor Network and IoT Platform,” Int. Conf. Cyber Resilience, ICCR 2022, pp. 1–11, 2022, doi: 10.1109/iccr56254.2022.9996080.
A. A. Chaudhry, R. Mumtaz, S. M. Hassan Zaidi, M. A. Tahir, and S. H. Muzammil School, “Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring,” HONET 2020 - IEEE 17th Int. Conf. Smart Communities Improv. Qual. Life using ICT, IoT AI, no. May 2004, pp. 151–155, 2020, doi:10.1109/honet50430.2020.9322666.
X. Díaz de Otálora et al., “Influence of farm diversity on nitrogen and greenhouse gas emission sources from key European dairy cattle systems: A step towards emission mitigation and nutrient circularity,” Agric. Syst., vol. 216, no. March 2023, 2024, doi:10.1016/j.agsy.2024.103902.
M. F. Díaz Baca, L. Moreno Lerma, N. Triana Ángel, and S. Burkart, “The relationships between land tenure, cattle production, and climate change – A systematic literature review,” Land use policy, vol. 141, no. April, 2024, doi: 10.1016/j.landusepol.2024.107169.
D. F. Sandoval, J. J. Junca Paredes, K. J. Enciso Valencia, M. F. Díaz Baca, A. M. Bravo Parra, and S. Burkart, “Long-term relationships of beef and dairy cattle and greenhouse gas emissions: Application of co-integrated panel models for Latin America,” Heliyon, vol. 10, no. 1, p. e23364, 2024, doi: 10.1016/j.heliyon.2023.e23364.
S. M. Leitner et al., “Greenhouse gas emissions from cattle enclosures in semi-arid sub-Saharan Africa: The case of a rangeland in South-Central Kenya,” Agric. Ecosyst. Environ., vol. 367, no. November 2023, p. 108980, 2024, doi: 10.1016/j.agee.2024.108980.
H. Zhao, X. Jia, J. Yang, Y. Wu, X. Wu, and L. Du, “Spatiotemporal variations and influencing factors of methane emissions from livestock in China: A spatial econometric analysis,” Sci. Total Environ., vol. 931, no. May, p. 173010, 2024, doi: 10.1016/j.scitotenv.2024.173010.
K. Kumar Ghosh, M. F. Ul Islam, A. A. Efaz, A. Chakrabarty, and S. Hossain, “Real-Time Mastitis Detection in Livestock using Deep Learning and Machine Learning Leveraging Edge Devices,” Int. Symp. Med. Inf. Commun. Technol. ISMICT, vol. 2023-May, pp. 1–6, 2023, doi: 10.1109/ISMICT58261.2023.10152110.
D. Kaur and A. Kaur, “IoT and Machine Learning-Based Systems for Predicting Cattle Health Status for Precision Livestock Farming,” 2022 Int. Conf. Smart Gener. Comput. Commun. Networking, SMART GENCON 2022, pp. 1–5, 2022, doi:10.1109/smartgencon56628.2022.10083995.
R. R. Samantaray, A. Azeez, and N. Hegde, “Efficient Smart Farm System Using Machine Learning,” IEEE Int. Conf. Adv. Electron. Commun. Comput. Intell. Inf. Syst. ICAECIS 2023 - Proc., pp. 576–581, 2023, doi: 10.1109/icaecis58353.2023.10169974.
N. M. Noor, N. A. M. Razali, S. N. S. A. Sham, K. K. Ishak, M. Wook, and N. A. Hasbullah, “Decentralised Access Control Framework using Blockchain: Smart Farming Case,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 5, 2023, doi: 10.14569/ijacsa.2023.0140560.
S. N. B. S. A. Sham, K. K. Ishak, N. A. M. Razali, N. M. Noor, and N. A. Hasbullah, “IoT Attack Detection Using Machine Learning and Deep Learning in Smart Home,” Int. J. Informatics Vis., vol. 8, no. 1, pp. 510–519, Mar. 2024, doi: 10.62527/joiv.8.1.2174.
N. M. Noor, N. A. M. Razali, N. A. Malizan, K. K. Ishak, M. Wook, and N. A. Hasbullah, “Decentralized Access Control using Blockchain Technology for Application in Smart Farming,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 9, Jan. 2022, doi:10.14569/ijacsa.2022.0130993.
Z. Ishak, N. Rajendran, O. I. Al-Sanjary, and N. A. Mat Razali, “Secure Biometric Lock System for Files and Applications: A Review,” Proc. - 2020 16th IEEE Int. Colloq. Signal Process. its Appl. CSPA 2020, no. Cspa, pp. 23–28, 2020, doi:10.1109/CSPA48992.2020.9068689.
M. Noorafiza, H. Maeda, R. Uda, T. Kinoshita, and M. Shiratori, “Vulnerability analysis using network timestamps in full virtualization virtual machine,” ICISSP 2015 - 1st Int. Conf. Inf. Syst. Secur. Privacy, Proc., pp. 83–89, 2015, doi: 10.5220/0005242000830089.
M. Noorafiza, H. Maeda, T. Kinoshita, and R. Uda, “Virtual machine remote detection method using network timestamp in cloud computing,” 2013 8th Int. Conf. Internet Technol. Secur. Trans. ICITST 2013, pp. 375–380, 2013, doi:10.1109/icitst.2013.6750225.
W. N. Wan Muhamad et al, “Enhance Multi-factor Authentication Model for Intelligence Community Access to Critical Surveillance Data,” Springer Int. Publ., vol. 11870, pp. 560–569, 2019, doi:10.1007/978-3-030-34032-2_49.
S. Ommi and M. Hashemi, “Machine learning technique in the north zagros earthquake prediction,” Appl. Comput. Geosci., vol. 22, no. April, p. 100163, 2024, doi: 10.1016/j.acags.2024.100163.
N. A. M. Razali et al., “Political Security Threat Prediction Framework Using Hybrid Lexicon-Based Approach and Machine Learning Technique,” IEEE Access, vol. 11, no. January, pp. 17151–17164, 2023, doi: 10.1109/access.2023.3246162.
M. Çakir, M. Yilmaz, M. A. Oral, H. Ö. Kazanci, and O. Oral, “Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture,” J. King Saud Univ. - Sci., vol. 35, no. 6, 2023, doi: 10.1016/j.jksus.2023.102754.
A. Abubakar Mas’ud, “Comparison of three machine learning models for the prediction of hourly PV output power in Saudi Arabia,” Ain Shams Eng. J., vol. 13, no. 4, p. 101648, 2022, doi:10.1016/j.asej.2021.11.017.
M. R. A. Bakar, N. A. M. Razali, M. Wook, M. N. Ismail, and T. M. T. Sembok, “Exploring and Developing an Industrial Automation Acceptance Model in the Manufacturing Sector Towards Adoption of Industry 4.0,” Manuf. Technol., vol. 21, no. 4, pp. 434–446, 2021, doi:10.21062/mft.2021.055.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).