Comparative Analysis and Exploration of 3DResNet-18 and InceptionV3-GRU with Temporal Segment Network (TSN) Framework for Laparoscopic Surgical Video Expertise Classification
How to cite (IJASEIT) :
Y. Gao et al., “JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS): A Surgical Activity Dataset for Human Motion Modeling,” Model. Monit. Comput. Assist. Interv. – MICCAI Work., pp. 1–10, 2014.
L. I. Basunbul, L. S. S. Alhazmi, S. A. Almughamisi, N. M. Aljuaid, H. Rizk, and R. Moshref, “Recent Technical Developments in the Field of Laparoscopic Surgery: A Literature Review,” Cureus, vol. 14, no. 2, 2022, doi: 10.7759/cureus.22246.
M. Ali, R. M. G. Pena, G. O. Ruiz, and S. Ali, “A comprehensive survey on recent deep learning-based methods applied to surgical data,” 2022, doi: 10.48550/arXiv.2209.01435.
F. von Bechtolsheim et al., “Does practice make perfect? Laparoscopic training mainly improves motion efficiency: a prospective trial.,” Updates Surg., vol. 75, no. 5, pp. 1103–1115, Aug. 2023, doi: 10.1007/s13304-023-01511-w.
C. W. Reynolds et al., “Evidence supporting performance measures of laparoscopic appendectomy through a novel surgical proficiency assessment tool and low-cost laparoscopic training system,” Surg. Endosc., vol. 37, no. 9, pp. 7170–7177, 2023, doi: 10.1007/s00464-023-10182-y.
B. Chen et al., “Trends and hotspots in research on medical images with deep learning: a bibliometric analysis from 2013 to 2023,” Front. Artif. Intell., vol. 6, no. November, pp. 1–14, 2023, doi: 10.3389/frai.2023.1289669.
I. Galić, M. Habijan, H. Leventić, and K. Romić, “Machine Learning Empowering Personalized Medicine: A Comprehensive Review of Medical Image Analysis Methods,” Electron., vol. 12, no. 21, 2023, doi: 10.3390/electronics12214411.
K. Guo et al., “Current applications of artificial intelligence-based computer vision in laparoscopic surgery,” Laparosc. Endosc. Robot. Surg., vol. 6, no. 3, pp. 91–96, 2023, doi: 10.1016/j.lers.2023.07.001.
L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.
F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU,” 2023, doi: 10.48550/arXiv.2305.17473.
S. Tiwari, G. Jain, D. K. Shetty, M. Sudhi, J. M. Balakrishnan, and S. R. Bhatta, “A Comprehensive Review on the Application of 3D Convolutional Neural Networks in Medical Imaging,” Eng. Proc., vol. 59, no. 1, pp. 1–9, 2023, doi: 10.3390/engproc2023059003.
J. Liu, T. Wang, A. Skidmore, Y. Sun, P. Jia, and K. Zhang, “Integrated 1D, 2D, and 3D CNNs Enable Robust and Efficient Land Cover Classification from Hyperspectral Imagery,” Remote Sens., vol. 15, no. 19, 2023, doi: 10.3390/rs15194797.
I. Funke, S. T. Mees, J. Weitz, and S. Speidel, “Video-based surgical skill assessment using 3D convolutional neural networks.,” Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 7, pp. 1217–1225, Jul. 2019, doi: 10.1007/s11548-019-01995-1.
Z. Jian, W. Yue, Q. Wu, W. Li, Z. Wang, and V. Lam, “Multitask Learning for Video-based Surgical Skill Assessment,” in 2020 Digital Image Computing: Techniques and Applications (DICTA), 2020, pp. 1–8. doi: 10.1109/DICTA51227.2020.9363408.
H. E. Kim, A. C. Linan, N. Santhanam, M. Jannesari, M. E. Maros, and T. Ganslandt, “Transfer learning for medical image classification : a literature review,” BMC Med. Imaging, pp. 1–13, 2022, doi: 10.1186/s12880-022-00793-7.
D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri, “A Closer Look at Spatiotemporal Convolutions for Action Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6450–6459, 2018, doi: 10.1109/CVPR.2018.00675.
R. Achmad, Y. Tokoro, J. Haurissa, and A. Wijanarko, “Recurrent Neural Network-Gated Recurrent Unit for Indonesia-Sentani Papua Machine Translation,” J. Inf. Syst. Informatics, vol. 5, no. 4, pp. 1449–1460, 2023, doi: 10.51519/journalisi.v5i4.597.
X. Li, “CNN-GRU model based on attention mechanism for large-scale energy storage optimization in smart grid,” Front. Energy Res., vol. 11, no. July, pp. 1–16, 2023, doi: 10.3389/fenrg.2023.1228256.
L. Lu, C. Zhang, K. Cao, T. Deng, and Q. Yang, “A Multichannel CNN-GRU Model for Human Activity Recognition,” IEEE Access, vol. 10, pp. 66797–66810, 2022, doi: 10.1109/ACCESS.2022.3185112.
H. Ullah and A. Munir, “Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework,” J. Imaging, vol. 9, no. 7, 2023, doi: 10.3390/jimaging9070130.
M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition: A Survey,” Appl. Sci., vol. 12, no. 18, 2022, doi: 10.3390/app12188972.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
J. Cao, M. Yan, Y. Jia, X. Tian, and Z. Zhang, “Application of a modified Inception-v3 model in the dynasty-based classification of ancient murals,” EURASIP J. Adv. Signal Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13634-021-00740-8.
K. Kasa, D. Burns, M. G. Goldenberg, O. Selim, C. Whyne, and M. Hardisty, “Multi-Modal Deep Learning for Assessing Surgeon Technical Skill,” Sensors, vol. 22, no. 19, 2022, doi: 10.3390/s22197328.
Q.-Q. Hong, L. Yang, and B. Zeng, “RANET: A Grasp Generative Residual Attention Network for Robotic Grasping Detection,” Int. J. Control. Autom. Syst., vol. 20, no. 12, pp. 3996–4004, 2022, doi: 10.1007/s12555-021-0929-8.
W. Zhou, J. Lu, Z. Xiong, and W. Wang, “Leveraging TCN and Transformer for effective visual-audio fusion in continuous emotion recognition,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2023, pp. 5756–5763. doi: 10.1109/cvprw59228.2023.00610.
X. A. Nguyen, D. Ljuhar, M. Pacilli, R. M. Nataraja, and S. Chauhan, “Surgical skill levels: Classification and analysis using deep neural network model and motion signals.,” Comput. Methods Programs Biomed., vol. 177, pp. 1–8, Aug. 2019, doi: 10.1016/j.cmpb.2019.05.008.
H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, “Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks,” Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 9, pp. 1611–1617, 2019, doi: 10.1007/s11548-019-02039-4.
R. Pedrett, P. Mascagni, G. Beldi, N. Padoy, and J. L. Lavanchy, “Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review,” Surg. Endosc., vol. 37, no. 10, pp. 7412–7424, 2023, doi: 10.1007/s00464-023-10335-z.
E. Yanik et al., “Deep neural networks for the assessment of surgical skills: A systematic review,” J. Def. Model. Simul., vol. 19, no. 2, pp. 159–171, 2022, doi: 10.1177/15485129211034586.
G. Karimian, E. Petelos, and S. M. A. A. Evers, “The ethical issues of the application of artificial intelligence in healthcare: a systematic scoping review,” AI Ethics, vol. 2, no. 4, pp. 539–551, 2022, doi: 10.1007/s43681-021-00131-7.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).