The Effect of CaCO3 and MgSO4 Fillers on the Characteristics of Biofoam Made from Oil Palm Leaf Substrate with Inoculums of Rhizopus sp. and Neurospora sitophila

Almira Natha Dewanti (1), Riska Surya Ningrum (2), Ratu Safitri (3), Tri Yuliana (4)
(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang, Indonesia
(2) Research Center for Biomas and Bioapoduct, National Research and Innovation Agency, Cibinong, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang, Indonesia
(4) Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Sumedang, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Dewanti, Almira Natha, et al. “The Effect of CaCO3 and MgSO4 Fillers on the Characteristics of Biofoam Made from Oil Palm Leaf Substrate With Inoculums of Rhizopus Sp. And Neurospora Sitophila”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 4, Aug. 2024, pp. 1320-6, doi:10.18517/ijaseit.14.4.20183.
Biofoam is a biodegradable material expected to replace the role and function of styrofoam. The oil palm (Elaeis guineensis Jacq) industry has generated much biomass waste, including oil palm leaves. Biofoam based on the mycelium of the fungi Rhizopus sp. and Neurospora sitophila has the potential as an innovative alternative technology to replace polystyrene. The purpose of this research is to obtain the characteristics of biofoam that uses oil palm leaf fibers as a substrate with Rhizopus sp. and N. sitophila inoculums, as well as CaCO3 and MgSO4 fillers. The method used in this research is experimental in the laboratory. The first factor is the type of filler used, which includes variations of CaCO3 and MgSO4 at a 5% concentration. The second factor is the species of commercial inoculants used: Rhizopus sp. and N. sitophila at a 25% concentration. The solid fermentation study was conducted in polypropylene molds for 7 days at room temperature. The characteristic parameters observed were the number of fungal colonies, morphological analysis with a Keyence digital microscope, water absorption test, biodegradability test, and compressive strength test. The study results showed that the mycelium of Rhizopus sp. could grow well on the oil palm leaf substrate with a 7-day incubation period at room temperature (27°C), resulting in 12.1 x 10³ CFU/g. The mycelium of N. sitophila could not grow on the oil palm leaf substrate within the 7-day incubation period. Characterization and morphological analysis tests showed that the biofoam quality closest to the standard was the formulation of Rhizopus sp. biofoam with the addition of CaCO3 and MgSO4. Both formulations met the water absorption and biodegradability standards but did not meet the compressive strength standards based on (SNI) 7188.7:2016.

J. B. Engel, A. Ambrosi, and I. C. Tessaro, “Development of biodegradable starch-based foams incorporated with grape stalks for food packaging,” Carbohydrate Polymers, vol. 225, p. 115234, Dec. 2019, doi: 10.1016/j.carbpol.2019.115234.

G. F. Sari, “The effect of proportion of ganyong starch and waste of straw rice on biodegradable foam production as sustainable packaging,” IOP Conference Series: Earth and Environmental Science, vol. 1041, no. 1, p. 012003, Jun. 2022, doi: 10.1088/1755-1315/1041/1/012003.

N. H. P. Rodrigues, J. T. de Souza, R. L. Rodrigues, M. H. G. Canteri, S. M. K. Tramontin, and A. C. de Francisco, “Starch-Based Foam Packaging Developed from a By-Product of Potato Industrialization (Solanum tuberosum L.),” Applied Sciences, vol. 10, no. 7, p. 2235, Mar. 2020, doi: 10.3390/app10072235.

J. P. Cruz-Tirado, R. Vejarano, D. R. Tapia-Blácido, G. Barraza-Jáuregui, and R. Siche, “Biodegradable foam tray based on starches isolated from different Peruvian species,” International Journal of Biological Macromolecules, vol. 125, pp. 800–807, Mar. 2019, doi:10.1016/j.ijbiomac.2018.12.111.

M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” Journal of Cleaner Production, vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815.

R. H. Pranata and Z. Arico, “Pemanfaatan Limbah Kebun Pelepah Kelapa Sawit (Elaeis guuinensis Jacq) Sebagai alternatif Pakan Bernilai Gizi Tinggi,” Jurnal Biologica Samudra, vol. 1, pp. 17–24, 2019.

J. López-Fernández, M. D. Benaiges, and F. Valero, “Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications,” Catalysts, vol. 10, no. 11, p. 1277, Nov. 2020, doi: 10.3390/catal10111277.

R. Wikandari, N. Hasniah, and M. J. Taherzadeh, “The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy,” Bioresource Technology, vol. 345, p. 126531, Feb. 2022, doi: 10.1016/j.biortech.2021.126531.

H.-P. Mattila and R. Zevenhoven, “Production of Precipitated Calcium Carbonate from Steel Converter Slag and Other Calcium-Containing Industrial Wastes and Residues,” CO2 Chemistry, pp. 347–384, 2014, doi: 10.1016/b978-0-12-420221-4.00010-x.

L. Calabrese, L. Hernández, R. Mondragón, and L. F. Cabeza, “Macro‐porous permeability aspects of MgSO4 salt hydrate foams for energy storage applications,” Journal of Applied Polymer Science, vol. 139, no. 15, Nov. 2021, doi: 10.1002/app.51924.

J. Obradovic, M. Voutilainen, P. Virtanen, L. Lassila, and P. Fardim, “Cellulose Fibre-Reinforced Biofoam for Structural Applications,” Materials, vol. 10, no. 6, p. 619, Jun. 2017, doi: 10.3390/ma10060619.

Lelivelt, R.; Lindner, G.; Teuffel, P.; Lamers, H. The Production Process and Compressive Strength of Mycelium-Based Materials. In Proceedings of the First International Conference on Bio-Based Building Materials, Clermont-Ferrand, France, 22–25 June 2015; Eindhoven University of Technology: Clermont-Ferrand, France, 2015; pp. 1–6.

A. Sulistyaningtyas et al., “Food-grade protease producing bacteria isolated from Indonesian soybean tempe gembus and red oncom after prolonged fermentation,” IOP Conference Series: Earth and Environmental Science, vol. 743, no. 1, p. 012008, May 2021, doi:10.1088/1755-1315/743/1/012008.

E. Indarti, S. Muliani, S. Wulya, R. Rafiqah, I. Sulaiman, and D. Yunita, “Development of environmental-friendly biofoam cup made from sugarcane bagasse and coconut fiber,” IOP Conference Series: Earth and Environmental Science, vol. 711, no. 1, p. 012011, Mar. 2021, doi: 10.1088/1755-1315/711/1/012011.

F. I. Rodhibilah, R. Safitri, R. S. Ningrum, D. A. Pramasari, D. Zulfiana, and N. I. Ratnaningtyas, “Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition,” Jurnal Bahan Alam Terbarukan, vol. 11, no. 2, pp. 141–150, Dec. 2022, doi: 10.15294/jbat.v11i2.40105.

A. H. Laksana and M. B. Waluyo, “Pengaruh Komposisi Serat Kenaf dan Serbuk CaCO3 Terhadap Kekuatan Tekuk dan Water Absorption Komposit Hybrid-Poliester,” Injection: Indonesian Journal of Vocational Mechanical Engineering, vol. 1, no. 2, pp. 58–64, Aug. 2021, doi: 10.58466/injection.v1i2.1133.

C. Bruscato, E. Malvessi, R. N. Brandalise, and M. Camassola, “High performance of macrofungi in the production of mycelium-based biofoams using sawdust — Sustainable technology for waste reduction,” Journal of Cleaner Production, vol. 234, pp. 225–232, Oct. 2019, doi: 10.1016/j.jclepro.2019.06.150.

V. P. Yarlina and D. I. Astuti, “Karakterisasi kandungan vitamin B12, folat dan isoflavon tempe kedelai dengan isolat murni Rhizopus oryzae, Rhizopus oligosporus, dan Rhizopus stolonifer sebagai bahan pangan fungsional,” Teknologi Pangan : Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, vol. 12, no. 1, pp. 92–102, Feb. 2021, doi:10.35891/tp.v12i1.2219.

A. Akmala, and E. Supriyo, "Optimasi Konsentrasi Selulosa pada Pembuatan Biodegradable Foam dari Selulosa dan Tepung Singkong," Pentana: Jurnal Penelitian Terapan Kimia, vol. 1, no. 1, pp. 27-40, Jun. 2022.

L. Peng, J. Yi, X. Yang, J. Xie, and C. Chen, “Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts,” Journal of Bioresources and Bioproducts, vol. 8, no. 1, pp. 78–89, Feb. 2023, doi:10.1016/j.jobab.2022.11.005.

E. Elsacker, S. Vandelook, J. Brancart, E. Peeters, and L. De Laet, “Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates,” PLOS ONE, vol. 14, no. 7, p. e0213954, Jul. 2019, doi:10.1371/journal.pone.0213954.

J. G. W. Siqueira, C. Rodrigues, L. P. de S. Vandenberghe, A. L. Woiciechowski, and C. R. Soccol, “Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review,” Biomass and Bioenergy, vol. 132, p. 105419, Jan. 2020, doi: 10.1016/j.biombioe.2019.105419.

U. Pato et al., “Physicochemical property of oil palm leaves and utilization of cellulose microfiber as probiotic encapsulant,” Biodiversitas Journal of Biological Diversity, vol. 22, no. 7, Jul. 2021, doi: 10.13057/biodiv/d220746.

A. Rizali, F. Fachrianto, M. H. Ansari, and A. Wahdi, “Pemanfaatan Limbah Pelepah dan Daun Kelapa Sawit Melalui Fermentasi Trichoderma sp. Sebagai Pakan Sapi Potong,” EnviroScienteae, vol. 14, no. 1, p. 1, Apr. 2018, doi: 10.20527/es.v14i1.4886.

C. Ruger-Herreros and L. M. Corrochano, “Conidiation in Neurospora crassa: vegetative reproduction by a model fungus,” International Microbiology, vol. 23, no. 1, pp. 97–105, Jun. 2019, doi:10.1007/s10123-019-00085-1.

Z. Wu et al., “Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review,” Materials Today Bio, vol. 16, p. 100445, Dec. 2022, doi: 10.1016/j.mtbio.2022.100445.

M. Andlar, T. Rezić, N. Marđetko, D. Kracher, R. Ludwig, and B. Šantek, “Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation,” Engineering in Life Sciences, vol. 18, no. 11, pp. 768–778, Jun. 2018, doi:10.1002/elsc.201800039.

Rahmi, S. L., Adlim, M., Lelifajri, N. A. Z., & Fathana, H. Pemanfaatan Selulosa dari Bahan Alam Pada Pembuatan Komposit Kitosan. Syiah Kuala University Press, 2023.

K. Ulaganathan, B. Goud, M. Reddy, V. Kumar, J. Balsingh, and S. Radhakrishna, “Proteins for Breaking Barriers in Lignocellulosic Bioethanol Production,” Current Protein & Peptide Science, vol. 16, no. 2, pp. 100–134, Feb. 2015, doi:10.2174/138920371602150215165718.

P. Merlin Christy, L. R. Gopinath, and D. Divya, “A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 167–173, Jun. 2014, doi:10.1016/j.rser.2014.03.010.

U. R. Ezeilo, R. A. Wahab, and N. A. Mahat, “Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation,” Renewable Energy, vol. 156, pp. 1301–1312, Aug. 2020, doi:10.1016/j.renene.2019.11.149.

H. Østby and A. Várnai, “Hemicellulolytic enzymes in lignocellulose processing,” Essays in Biochemistry, vol. 67, no. 3, pp. 533–550, Apr. 2023, doi: 10.1042/ebc20220154.

P. J. Weimer, “Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms,” Microorganisms, vol. 10, no. 12, p. 2345, Nov. 2022, doi: 10.3390/microorganisms10122345.

S. Shrestha, A. L. M. Kognou, J. Zhang, and W. Qin, “Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives,” Waste and Biomass Valorization, vol. 12, no. 9, pp. 4805–4823, Nov. 2020, doi: 10.1007/s12649-020-01305-w.

N. Ilić, M. Milić, S. Beluhan, and S. Dimitrijević-Branković, “Cellulases: From Lignocellulosic Biomass to Improved Production,” Energies, vol. 16, no. 8, p. 3598, Apr. 2023, doi: 10.3390/en16083598.

Q. Jin, M. Zhou, L. Zhu, H. Liu, and F. Zhu, “Microbial Growth and Calcium Carbonate Nucleation Properties in Mineral Admixtures,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–15, Jun. 2022, doi: 10.1155/2022/2177630.

Surbakti,E.S.P.,A.S.Duniaji., dan K.A.Nocianitri. Pengaruh jenis substrat terhadap pertumbuhan Rhizopus oligosporus DP02 Bali dalam pembuatan ragi tempe. Jurnal Ilmu dan Teknologi Pangan. Vol.11, no. 1, pp 92-99. 2022.

Prayitno, T.A., & Hidayati, N. Pengantar Mikrobiologi. Malang, Indonesia: Media Nusa Creative, 2017.

A. Rendowaty, A. Djamaan, and D. Handayani, “Waktu Kultivasi Optimal dan Aktivitas Antibakteri dari Ekstrak Etil Asetat Jamur Simbion Aspergillus unguis (WR8) dengan Haliclona fascigera,” Jurnal Sains Farmasi & Klinis, vol. 4, no. 1, p. 49, Dec. 2017, doi:10.29208/jsfk.2017.4.1.147.

U. Hasanah, “Kurva Pertumbuhan Jamur Endofit Antijamur Candida Dari Tumbuhan Raru (Cotylelobium melanoxylon) Genus Aspergillus,” Jurnal Biosains, vol. 4, no. 2, p. 102, Aug. 2018, doi: 10.24114/jbio.v4i2.10474.

S. Manan, M. W. Ullah, M. Ul-Islam, O. M. Atta, and G. Yang, “Synthesis and applications of fungal mycelium-based advanced functional materials,” Journal of Bioresources and Bioproducts, vol. 6, no. 1, pp. 1–10, Feb. 2021, doi: 10.1016/j.jobab.2021.01.001.

L. Suliswati, C. Sriherwanto, and I. Suja’i, “Dampak Teknik Pengirisan Dan Pencetakan Terhadap Daya Apung Pakan Ikan Yang Difermentasi Menggunakan Rhizopus sp.,” Jurnal Bioteknologi & Biosains Indonesia (JBBI), vol. 5, no. 2, p. 127, Dec. 2018, doi:10.29122/jbbi.v5i2.3096.

T.-H. Kim et al., “Influence of CaCO3 on Density and Compressive Strength of Calcium Aluminate Cement-Based Cementitious Materials in Binder Jetting,” Materials, vol. 17, no. 14, p. 3463, Jul. 2024, doi:10.3390/ma17143463.

D. Banerjee and A. Dutta, “Polymer Foams in Environmental Applications,” Novel Polymeric Materials for Environmental Applications, pp. 179–231, Apr. 2023, doi:10.1142/9789811265938_0005.

Z. (Joey) Yang, F. Zhang, B. Still, M. White, and P. Amstislavski, “Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam,” Journal of Materials in Civil Engineering, vol. 29, no. 7, Jul. 2017, doi: 10.1061/(asce)mt.1943-5533.0001866.

I. Nurfitasari, “Pengaruh Penambahan Kitosan dan Gelatin terhadap Kualitas Biodegradable Foam Berbahan Baku Pati Biji Nangka (Artocarpus heterophyllus),” Skripsi, Jurusan Kimia, Universitas Islam Negeri Alauddin, Makassar, 2018. Available:http://repositori.uin-alauddin.ac.id/id/eprint/12656.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).