Macroalgae-Based Bio-Based Packaging: Characteristics, Green Extraction Methods, and Applications as Sustainable Solutions
How to cite (IJASEIT) :
V. A. Harkal and S. P. Deshmukh, “A review on biodegradable polymers: Used as packaging materials,” GSC Biol. Pharm. Sci., vol. 25, no. 2, pp. 107–115, Sep. 2023, doi:10.30574/gscbps.2023.25.2.0423.
J. E. Gamboni, G. V. Bonfiglio, A. M. Slavutsky, and M. A. Bertuzzi, “Evaluation of edible films as single-serve pouches for a sustainable packaging system,” Food Chem. Adv., vol. 3, p. 100547, Dec. 2023, doi: 10.1016/j.focha.2023.100547.
R. K. Khalil, D. S. Abdelrahim, and S. A. Khattab, “Sustainable utilization of valorized agro-wastes for active and intelligent packaging of processed meats,” Food Hydrocoll., vol. 150, p. 109660, May 2024, doi: 10.1016/j.foodhyd.2023.109660.
A. Trubetskaya et al., “Microwave hydrolysis, as a sustainable approach in the processing of seaweed for protein and nanocellulose management,” Algal Res., vol. 78, p. 103406, Mar. 2024, doi:10.1016/j.algal.2024.103406.
V. Norton et al., “Understanding consumers' sustainability knowledge and behaviour towards food packaging to develop tailored consumer-centric engagement campaigns: A Greece and the United Kingdom perspective,” J. Clean. Prod., vol. 408, p. 137169, Jul. 2023, doi:10.1016/j.jclepro.2023.137169.
A. Abbadessa et al., “Layer-by-layer assembly of sustainable lignin-based coatings for food packaging applications,” Prog. Org. Coat., vol. 182, p. 107676, Sep. 2023, doi: 10.1016/j.porgcoat.2023.107676.
A. T. Williams and N. Rangel-Buitrago, “The past, present, and future of plastic pollution,” Mar. Pollut. Bull., vol. 176, p. 113429, Mar. 2022, doi: 10.1016/j.marpolbul.2022.113429.
F. Wu, M. Misra, and A. K. Mohanty, “Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging,” Prog. Polym. Sci., vol. 117, p. 101395, Jun. 2021, doi: 10.1016/j.progpolymsci.2021.101395.
I. Sazdovski, A. Bala, and P. Fullana-i-Palmer, “Linking LCA literature with circular economy value creation: A review on beverage packaging,” Sci. Total Environ., vol. 771, p. 145322, Jun. 2021, doi:10.1016/j.scitotenv.2021.145322.
L. Donkor, G. Kontoh, A. Yaya, J. K. Bediako, and V. Apalangya, “Bio-based and sustainable food packaging systems: Relevance, challenges, and prospects,” Appl. Food Res., vol. 3, no. 2, p. 100356, Dec. 2023, doi: 10.1016/j.afres.2023.100356.
S. U. M. Jagoda, J. R. Gamage, and H. P. Karunathilake, “Environmentally sustainable plastic food packaging: A holistic life cycle thinking approach for design decisions,” J. Clean. Prod., vol. 400, p. 136680, May 2023, doi: 10.1016/j.jclepro.2023.136680.
A. T. Petkoska, D. Daniloski, N. M. D’Cunha, N. Naumovski, and A. T. Broach, “Edible packaging: Sustainable solutions and novel trends in food packaging,” Int. Food Res. J., vol. 140, p. 109981, Feb. 2021, doi: 10.1016/j.foodres.2020.109981.
A. Matloob et al., “A review on edible coatings and films: Advances, composition, production methods, and safety concerns,” ACS Omega, vol. 8, no. 32, pp. 28932–28944, Aug. 2023, doi:10.1021/acsomega.3c03459.
O. Li et al., “Exploration of converting food waste into value-added products via insect pretreatment-assisted hydrothermal catalysis,” ACS Omega, vol. 8, no. 21, pp. 18760–18772, May 2023, doi: 10.1021/acsomega.3c00762.
J. R. A. Pires et al., “Current applications of bionanocomposites in food processing and packaging,” Polymers, vol. 15, no. 10, p. 2336, Mar. 2023, doi: 10.3390/polym15102336.
P. Wongphan et al., “Unveiling the future of meat packaging: Functional biodegradable packaging preserving meat quality and safety,” Polymers, vol. 16, no. 9, p. 1232, Mar. 2024, doi:10.3390/polym16091232.
M. T. Siraj et al., “Eco-friendly food packaging innovations: A review of recent progress on recyclable polymers,” 2023.
Y. Wu et al., “Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review,” Int. J. Biol. Macromol., vol. 249, p. 125922, Sep. 2023, doi: 10.1016/j.ijbiomac.2023.125922.
C. V. Stevens, Bio-Based Packaging: Material, Environmental and Economic Aspects, 1st ed. Hoboken, NJ: John Wiley & Sons, 2021.
J. Xia et al., “Multifunctional sustainable films of bacterial cellulose nanocrystal-based, three-phase Pickering nanoemulsions: A promising active food packaging for cheese,” J. Chem. Eng., vol. 466, Jun. 2023, doi: 10.1016/j.cej.2023.143295.
H. Li et al., “Preparation and characterization of sodium alginate/gelatin/Ag nanocomposite antibacterial film and its application in the preservation of tangerine,” Food Packag. Shelf Life, vol. 33, p. 100928, Sep. 2022, doi: 10.1016/j.fpsl.2022.100928.
Y. Zhang et al., “Sustainably sourced, water-soluble biofilms based on keratin constructed through two crosslinking modes: Turning waste into useful material,” J. Environ. Chem. Eng., vol. 12, no. 2, p. 111978, Apr. 2024, doi: 10.1016/j.jece.2024.111978.
A. Nazrin et al., “Introduction to bio-based packaging materials,” Phys. Sci. Rev., vol. 0, no. 0, Apr. 2023, doi: 10.1515/psr-2022-0006.
L. Filiciotto and G. Rothenberg, “Biodegradable plastics: Standards, policies, and impacts,” ChemSusChem, vol. 14, no. 1, pp. 56–72, Oct. 2021, doi: 10.1002/cssc.202002044.
E. Ada et al., “Identifying the drivers of circular food packaging: A comprehensive review for the current state of the food supply chain to be sustainable and circular,” Sustainability, vol. 15, no. 15, p. 11703, Jul. 2023, doi: 10.3390/su151511703.
A. Hassoun et al., “The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies,” Crit. Rev. Food Sci. Nutr., vol. 62, no. 23, pp. 6547–6563, Feb. 2022, doi:10.1080/10408398.2022.2034735.
A. A. Oyekanmi et al., “Extracted supercritical CO2 cinnamon oil functional properties enhancement in cellulose nanofibre reinforced Euchema cottoni biopolymer films,” J. Mater. Res. Technol., vol. 15, pp. 4293–4308, Nov.–Dec. 2021, doi: 10.1016/j.jmrt.2021.10.025.
S. Ebrahimzadeh et al., “Incorporation of essential oils in edible seaweed-based films: A comprehensive review,” Trends Food Sci. Technol., vol. 135, pp. 43–56, May 2023, doi:10.1016/j.tifs.2023.03.015.
F. Tan, L. Zha, and Q. Zhou, “Assembly of AIEgen-based fluorescent metal–organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding,” Adv. Mater., vol. 34, no. 28, p. 2201470, Apr. 2022, doi: 10.1002/adma.202201470.
H. Jin et al., “Surface hydrophobization provides hygroscopic supramolecular plastics based on polysaccharides with damage-specific healability and room-temperature recyclability,” Adv. Mater., vol. 35, no. 8, p. 2207688, Nov. 2022, doi: 10.1002/adma.202207688.
A. Khajuria et al., “Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals,” Circ. Econ., vol. 1, no. 1, p. 100001, Sep. 2022, doi: 10.1016/j.cec.2022.100001.
P. Scarano et al., “Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review,” Trends Food Sci. Technol., vol. 122, pp. 157–170, Apr. 2022, doi:10.1016/j.tifs.2022.02.003.
A. E. Nilsson et al., “Life cycle assessment of a seaweed-based biorefinery concept for production of food, materials, and energy,” Algal Res., vol. 65, p. 102725, Jun. 2022, doi:10.1016/j.algal.2022.102725.
J. Liu et al., “Environment education: A first step in solving plastic pollution,” Front. Environ. Sci., vol. 11, Mar. 2023, doi:10.3389/fenvs.2023.1130463.
R. Thiruchelvi, A. Das, and E. Sikdar, “Bioplastics as better alternative to petro plastic,” Mater. Today: Proc., vol. 37, pp. 1634–1639, Jan. 2021, doi: 10.1016/j.matpr.2020.07.176.
D. Wu et al., “Bio-inspired seaweed-based nanocomposite materials with excellent degradability and multifunctional barrier properties for green packaging,” J. Chem. Eng., vol. 479, p. 147285, Jan. 2024, doi:10.1016/j.cej.2023.147285.
J. Cai et al., “Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development,” FAO Fisheries and Aquaculture Circular, 2021, doi: 10.4060/cb5670en.
R. Mwendwa, M. Wawire, and P. Kahenya, “Potential for use of seaweed as a fish feed ingredient: A review,” J. Agric. Sci., vol. 15, no. 2, pp. 96–108, Jan. 2023, doi: 10.5539/jas.v15n2p96.
M. S. B. Ushakiran et al., “Phycocolloid contents in certain economically important seaweeds of Kerala coast, India,” J. Mar. Biol. Assoc. India, vol. 63, no. 2, pp. 5–11, Jan. 2021, doi:10.6024/jmbai.2021.63.2.2269-01.
C. Vance et al., “Sustainable scale-up of Irish seaweed production: Quantifying potential environmental, economic, and social impacts of wild harvesting and cultivation pathways,” Algal Res., vol. 75, p. 103294, Sep. 2023, doi: 10.1016/j.algal.2023.103294.
R. Sugumaran et al., “A retrospective review of global commercial seaweed production—Current challenges, biosecurity and mitigation measures and prospects,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, p. 7087, Jun. 2022, doi: 10.3390/ijerph19127087.
A. Moreira et al., “The underexplored potential of green macroalgae in aquaculture,” Rev. Aquac., vol. 14, no. 1, pp. 5–26, Jun. 2021, doi:10.1111/raq.12580.
The State of World Fisheries and Aquaculture 2022, Jun. 2022, doi:10.4060/cc0461en.
Report of the Expert Meeting on Food Safety for Seaweed – Current Status and Future Perspectives, 2022, doi: 10.4060/cc0846en.
J. Layek et al., “An integrated organic farming system: Innovations for farm diversification, sustainability, and livelihood improvement of hill farmers,” Front. Sustain. Food Syst., vol. 7, p. 1151113, Apr. 2023, doi: 10.3389/fsufs.2023.1151113.
I. G. Mekinić et al., “Algal carotenoids: Chemistry, sources, and application,” Foods, vol. 12, no. 14, p. 2768, Jul. 2023, doi:10.3390/foods12142768.
F. Sultana et al., “Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review,” Aquac. Fish., vol. 8, no. 5, pp. 463–480, Sep. 2023, doi:10.1016/j.aaf.2022.09.001.
B. S. Negreanu-Pirjol et al., “Marine bioactive compounds derived from macroalgae as new potential players in drug delivery systems: A review,” Pharmaceutics, vol. 14, no. 9, p. 1781, Aug. 2022, doi:10.3390/pharmaceutics14091781.
N. Craveiro and J. S. Rosa Filho, “Macroalgae traits and seasonality as drivers of polychaete assemblages on macroalgae of tropical sandstone reefs,” Estuar. Coast. Shelf Sci., vol. 297, p. 108619, Feb. 2024, doi: 10.1016/j.ecss.2024.108619.
V. Cebrián-Lloret et al., “Sustainable bio-based materials from minimally processed red seaweeds: Effect of composition and cell wall structure,” J. Environ. Polym. Environ., vol. 31, no. 3, pp. 886–899, Nov. 2023, doi: 10.1007/s10924-022-02648-2.
S. Roy et al., “Agar-based edible films and food packaging application: A comprehensive review,” Trends Food Sci. Technol., vol. 141, p. 104198, Nov. 2023, doi: 10.1016/j.tifs.2023.104198.
M. Ajala et al., “The potential effect of polysaccharides extracted from red alga Gelidium spinosum against intestinal epithelial cell apoptosis,” Pharmaceuticals, vol. 16, no. 3, p. 444, Mar. 2023, doi:10.3390/ph16030444.
A. O. Kravchenko et al., “Carrageenans and their oligosaccharides from red seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and their antiproliferative activity,” Int. J. Mol. Sci., vol. 24, no. 8, p. 7657, Apr. 2023, doi:10.3390/ijms24087657.
P. Nakhate and Y. Van Der Meer, “A systematic review on seaweed functionality: A sustainable bio-based material,” Sustainability, vol. 13, no. 11, p. 6174, May 2021, doi: 10.3390/su13116174.
I. Bose et al., “Unveiling the potential of marine biopolymers: Sources, classification, and diverse food applications,” Materials, vol. 16, no. 13, p. 4840, Jul. 2023, doi: 10.3390/ma16134840.
M. P. Tennakoon et al., “Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative,” iScience, vol. 26, no. 4, p. 106404, Apr. 2023, doi: 10.1016/j.isci.2023.106404.
N. E. Elkaliny et al., “Macroalgae bioplastics: A sustainable shift to mitigate the ecological impact of petroleum-based plastics,” Polymers, vol. 16, no. 9, p. 1246, Apr. 2024, doi: 10.3390/polym16091246.
S. Chaudhary, “Seaweed polysaccharide coatings/films for meat-based foods,” Food Hum., vol. 1, pp. 777–792, Dec. 2023, doi:10.1016/j.foohum.2023.07.029.
G. S. Anisha et al., “Fucoidan from marine macroalgae: Biological actions and applications in regenerative medicine, drug delivery systems, and food industry,” Bioengineering, vol. 9, no. 9, p. 472, Sep. 2022, doi: 10.3390/bioengineering9090472.
S. Karuppusamy et al., “Biological properties and health-promoting functions of laminarin: A comprehensive review of preclinical and clinical studies,” Mar. Drugs, vol. 20, no. 12, p. 772, 2022, doi:10.3390/md20120772.
I. Santana, M. Felix, and C. Bengoechea, “Seaweed as basis of eco-sustainable plastic materials: Focus on alginate,” Polymers, vol. 16, no. 12, p. 1662, Jun. 2024, doi: 10.3390/polym16121662.
A. Hurtado et al., “Alginate: Enhancement strategies for advanced applications,” Int. J. Mol. Sci., vol. 23, no. 9, p. 4486, Apr. 2022, doi:10.3390/ijms23094486.
B. Wang et al., “Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues,” Acta Biomater., vol. 128, pp. 130–142, Jul. 2021, doi:10.1016/j.actbio.2021.04.016.
N. Rhein-Knudsen and A. S. Meyer, “Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids,” Trends Food Sci. Technol., vol. 109, pp. 608–621, Mar. 2021, doi:10.1016/j.tifs.2021.01.052.
K. Chumsook, J. Praiboon, and X. Fu, “Sulfated galactans from agarophytes: Review of extraction methods, structural features, and biological activities,” Biomolecules, vol. 13, no. 12, p. 1745, Dec. 2023, doi: 10.3390/biom13121745.
S. A. Vuai, “Characterization of agar extracted from Gracilaria species collected along Tanzanian coast,” Heliyon, vol. 8, no. 2, p. e09002, Feb. 2022, doi:10.1016/j.heliyon.2022.e09002.
J. S. Gomes-Dias et al., “Red seaweed biorefinery: The influence of sequential extractions on the functional properties of extracted agars and porphyrans,” Int. J. Biol. Macromol., vol. 257, p. 128479, Feb. 2024, doi: 10.1016/j.ijbiomac.2023.128479.
V. Hernández et al., “Agar biopolymer films for biodegradable packaging: A reference dataset for exploring the limits of mechanical performance,” Materials, vol. 15, no. 11, p. 3954, Jun. 2022, doi:10.3390/ma15113954.
J. Cheng et al., “Applications of biodegradable materials in food packaging: A review,” Alex. Eng. J., vol. 91, pp. 70–83, Mar. 2024, doi: 10.1016/j.aej.2024.01.080.
K. Iliou et al., “Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications,” Mar. Drugs, vol. 20, no. 5, p. 314, May 2022, doi:10.3390/md20050314.
P. M. Junaid et al., “Polysaccharide-based hydrogels for microencapsulation of bioactive compounds: A review,” J. Agric. Food Res., p. 101038, Feb. 2024, doi: 10.1016/j.jafr.2024.101038.
C. R. Contessa et al., “Agar-agar and chitosan as precursors in the synthesis of functional film for foods: A review,” Macromol., vol. 3, no. 2, pp. 275–289, May 2023, doi: 10.3390/macromol3020017.
L. Poulet et al., “α-Carrageenan: An alternative route for the heterogeneous phase degradation of hybrid ι-/κ-carrageenan,” Algal Res., vol. 71, p. 103049, Apr. 2023, doi: 10.1016/j.algal.2023.103049.
C. Song et al., “Characterization and gel properties of low-molecular-weight carrageenans prepared by photocatalytic degradation,” Polymers, vol. 15, no. 3, p. 602, Jan. 2023, doi:10.3390/polym15030602.
N. Preetha and P. R. Iyer, “Preparation and characterization of packaging film using carrageenan from red seaweed and green seaweed (Kappaphycus alvarezii (Doty) Doty ex Silva),” Indian J. Appl. Pure Biol., vol. 36, no. 2, pp. 235–249, 2021.
R. R. Rupert et al., “Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, structure, production, and application,” Front. Plant Sci., vol. 13, p. 859635, May 2022, doi: 10.3389/fpls.2022.859635.
W. Nurani et al., “Kappaphycus alvarezii as a renewable source of kappa-carrageenan and other cosmetic ingredients,” Int. J. Biol. Macromol., vol. 260, p. 129458, Mar. 2024, doi:10.1016/j.ijbiomac.2024.129458.
M. Álvarez-Viñas et al., “Microwave-assisted extraction of carrageenan from Sarcopeltis skottsbergii,” Mar. Drugs, vol. 21, no. 2, p. 83, Jan. 2023, doi: 10.3390/md21020083.
M. Nasrollahzadeh, M. Sajjadi, Z. Nezafat, and N. Shafiei, Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications: Polysaccharide Biopolymer Chemistry. Amsterdam: Elsevier, 2021, pp. 45–105.
L. V. Mariot et al., “Diets supplemented with carrageenan increase the resistance of the Pacific white shrimp to WSSV without changing its growth performance parameters,” Aquaculture, vol. 545, p. 737172, Mar. 2021, doi: 10.3389/fmicb.2016.00421.
P. Vaghela et al., “Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract,” Algal Res., vol. 66, p. 102774, Jul. 2022, doi: 10.1016/j.algal.2022.102774.
C. Cheng et al., “Recent advances in carrageenan-based films for food packaging applications,” Front. Nutr., vol. 9, p. 1004588, Sep. 2022, doi: 10.3389/fnut.2022.1004588.
R. Ramakrishnan, S. V. Kulandhaivelu, and S. Roy, “Alginate/carboxymethyl cellulose/starch-based active coating with grapefruit seed extract to extend the shelf life of green chilli,” Ind. Crops Prod., vol. 199, p. 116752, Sep. 2023, doi:10.1016/j.indcrop.2023.116752.
V. Cebrián-Lloret et al., “Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films,” Algal Res., vol. 61, p. 102576, Jan. 2022, doi:10.1016/j.algal.2021.102576.
H. M. Noor, M. A. Alamsjah, and S. Andriyono, “Characterization of semi-refined kappa-carrageenan from Kappaphycus alvarezii with different solvents in Tanjung Sumenep,” in IOP Conf. Ser. Earth Environ. Sci., vol. 679, no. 1, p. 012043, Feb. 2021, doi:10.1088/1755-1315/679/1/012043.
M. T. Nogueira et al., “Optimal conditions for alkaline treatment of alginate extraction from the brown seaweed Sargassum cymosum C. Agardh by response surface methodology,” Appl. Food Res., vol. 2, no. 2, p. 100141, Dec. 2022, doi: 10.1016/j.afres.2022.100141.
A. Carreira-Casais et al., “Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae,” Int. J. Environ. Res. Public Health, vol. 18, no. 17, p. 9153, Aug. 2021, doi: 10.3390/ijerph18179153.
C. V. L. Giosafatto and R. Porta, “Advanced biomaterials for food edible coatings,” Int. J. Mol. Sci., vol. 24, no. 12, p. 9929, Jun. 2023, doi: 10.3390/ijms24129929.
M. M. Jayakody, M. P. G. Vanniarachch, and I. Wijesekara, “Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: A review,” J. Food Meas. Charact., vol. 16, no. 2, pp. 1195–1227, Jan. 2022, doi: 10.1007/s11694-021-01277-y.
H. Malektaj, A. D. Drozdov, and J. deClaville Christiansen, “Mechanical properties of alginate hydrogels cross-linked with multivalent cations,” Polymers, vol. 15, no. 14, p. 3012, Jul. 2023, doi:10.3390/polym15143012.
I. Kong, P. Degraeve, and L. P. Pui, “Polysaccharide-based edible films incorporated with essential oil nanoemulsions: Physico-chemical, mechanical properties and its application in food preservation—A review,” Foods, vol. 11, no. 4, p. 555, Feb. 2022, doi:10.3390/foods11040555.
O. Pokrovskiy et al., “Fluid revisited: An overlook of a method for solubility measurements in supercritical fluids based on chromatography retention,” J. Mol. Liq., vol. 400, p. 124466, Apr. 2024, doi: 10.1016/j.molliq.2024.124466.
J. Malik and S. C. Mandal, “Extraction of herbal biomolecules,” in Herbal Biomolecules in Healthcare Applications, Academic Press, 2022, pp. 21–46.
H. Fraguela-Meissimilly et al., “New trends in supercritical fluid technology and pressurized liquids for the extraction and recovery of bioactive compounds from agro-industrial and marine food waste,” Molecules, vol. 28, no. 11, p. 4421, May 2023, doi:10.3390/molecules28114421.
N. I. W. Azelee et al., “Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications—A review,” Int. J. Biol. Macromol., p. 126492, Dec. 2023, doi: 10.1016/j.ijbiomac.2023.126492.
M. Usman, M. Nakagawa, and S. Cheng, “Emerging trends in green extraction techniques for bioactive natural products,” Processes, vol. 11, no. 12, p. 3444, Dec. 2023, doi: 10.3390/pr11123444.
P. Streimikyte, P. Viskelis, and J. Viskelis, “Enzymes-assisted extraction of plants for sustainable and functional applications,” Int. J. Mol. Sci., vol. 23, no. 4, p. 2359, Feb. 2022, doi:10.3390/ijms23042359.
G. Franca-Oliveira, T. Fornari, and B. Hernández-Ledesma, “A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches,” Processes, vol. 9, no. 9, p. 1626, Sep. 2021, doi: 10.3390/pr9091626.
R. Martins et al., “Green extraction techniques of bioactive compounds: A state-of-the-art review,” Processes, vol. 11, no. 8, p. 2255, Jul. 2023, doi: 10.3390/pr11082255.
A. Patra, S. Abdullah, and R. C. Pradhan, “Review on the extraction of bioactive compounds and characterization of fruit industry by-products,” Bioresour. Bioprocess., vol. 9, no. 1, Feb. 2022, doi:10.1186/s40643-022-00498-3.
I. Irianto et al., “From sea to solution: A review of green extraction approaches for unlocking the potential of brown algae,” S. Afr. J. Chem. Eng., Jan. 2024, doi: 10.1016/j.sajce.2024.01.001.
B. Mabate and B. I. Pletschke, “Sequential and enzyme-assisted extraction of algal bioproducts from Ecklonia maxima,” Enzyme Microb. Technol., vol. 173, p. 110364, Feb. 2024, doi:10.1016/j.enzmictec.2023.110364.
L. Bandici et al., “The influence of microwave treatments on bioactive compounds and antioxidant capacity of Mentha piperita L.,” Materials, vol. 15, no. 21, p. 7789, Nov. 2022, doi:10.3390/ma15217789.
I. Georgiopoulou et al., “Experimental design and optimization of recovering bioactive compounds from Chlorella vulgaris through conventional extraction,” Molecules, vol. 27, no. 1, p. 29, Jan. 2021, doi: 10.3390/molecules27010029.
A. H. Nour et al., “Microwave-assisted extraction of bioactive compounds,” in Microwave Heating: Electromagnetic Fields Causing Thermal and Non-Thermal Effects, 2021, pp. 1–31.
E. Quitério et al., “A critical comparison of the advanced extraction techniques applied to obtain health-promoting compounds from seaweeds,” Mar. Drugs, vol. 20, no. 11, p. 677, Oct. 2022, doi:10.3390/md20110677.
Y. Deng et al., “Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies—A review,” Trends Food Sci. Technol., vol. 122, pp. 83–96, Apr. 2022, doi: 10.1016/j.tifs.2022.01.034.
J. H. Lee et al., “The antioxidant activity of Undaria pinnatifida sporophyll extract obtained using ultrasonication: A focus on crude polysaccharide extraction using ethanol precipitation,” Antioxidants, vol. 12, no. 11, p. 1904, Oct. 2023, doi:10.3390/antiox12111904.
S. Rashad et al., “Optimizing the ultrasonic-assisted extraction of antioxidants from Ulva lactuca algal biomass using factorial design,” Biomass Convers. Biorefin., vol. 13, no. 7, pp. 5681–5690, May 2023, doi: 10.1007/s13399-021-01516-8.
A. Dobrinčić et al., “Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from Fucus virsoides and Cystoseira barbata,” Foods, vol. 10, no. 7, p. 1481, Jun. 2021, doi: 10.3390/foods10071481.
S. Lomartire and A. M. M. Gonçalves, “Novel technologies for seaweed polysaccharides extraction and their use in food with therapeutically applications—A review,” Foods, vol. 11, no. 17, p. 2654, Sep. 2022, doi: 10.3390/foods11172654.
C. Teixeira-Guedes et al., “Enzymatic approach for the extraction of bioactive fractions from red, green and brown seaweeds,” Food Bioprod. Process., vol. 138, pp. 25–39, Mar. 2023, doi:10.1016/j.fbp.2022.12.005.
S. Y. Kim, V. C. Roy, J. S. Park, and B. S. Chun, “Extraction and characterization of bioactive compounds from brown seaweed (Undaria pinnatifida) sporophyll using two sequential green extraction techniques,” Algal Res., vol. 77, p. 103330, Jan. 2024, doi:10.1016/j.algal.2023.103330.
T. F. Gondo et al., “Extractability, selectivity, and comprehensiveness in supercritical fluid extraction of seaweed using ternary mixtures of carbon dioxide, ethanol, and water,” J. Chromatogr. A, vol. 1706, p. 464267, Sep. 2023, doi: 10.1016/j.chroma.2023.464267.
X. Zhu et al., “Characterisation of laminarin extracted from brown seaweed Laminaria digitata, using optimized ultrasound- and ultrafiltration-assisted extraction method,” Algal Res., vol. 75, p. 103277, Sep. 2023, doi: 10.1016/j.algal.2023.103277.
X. Zhu et al., “Novel biorefinery process for extraction of laminarin, alginate and protein from brown seaweed using hydrodynamic cavitation,” Algal Res., vol. 74, p. 103243, Jul. 2023, doi:10.1016/j.algal.2023.103243.
N. Rhein-Knudsen, D. Reyes-Weiss, and S. J. Horn, “Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases,” Int. J. Biol. Macromol., vol. 229, pp. 199–209, Feb. 2023, doi: 10.1016/j.ijbiomac.2022.12.261.
Z. Li et al., “Characteristics and mechanisms of sustainable recovery of perlite from carrageenan residue by green technology and its application in carrageenan extraction,” J. Clean. Prod., vol. 434, p. 140131, Jan. 2024, doi: 10.1016/j.jclepro.2023.140131.
A. R. Rudke et al., “Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii,” Algal Res., vol. 67, p. 102866, Sep. 2022, doi: 10.1016/j.algal.2022.102866.
B. Keramane et al., “Pressurized liquid extraction of bioactive extracts with antioxidant and antibacterial activity from green, red and brown Algerian algae,” Algal Res., vol. 76, p. 103293, Nov. 2023, doi:10.1016/j.algal.2023.103293.
M. K. A. Sobuj et al., “Qualitative and quantitative phytochemical analysis of brown seaweed Sargassum polycystum collected from Bangladesh with its antioxidant activity determination,” Food Chem. Adv., vol. 4, p. 100565, Jun. 2024, doi: 10.1016/j.focha.2023.100565.
S. Polat et al., “Recent advances in industrial applications of seaweeds,” Crit. Rev. Food Sci. Nutr., vol. 63, no. 21, pp. 4979–5008, Dec. 2023, doi: 10.1080/10408398.2021.2010646.
R. Martínez-López and M. G. Tuohy, “Rapid and cost-efficient microplate assay for the accurate quantification of total phenolics in seaweeds,” Food Chem.: Mol. Sci., vol. 6, p. 100166, Jul. 2023, doi:10.1016/j.fochms.2023.100166.
C. M. C. Andrés et al., “Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism,” Processes, vol. 11, no. 9, p. 2771, Sep. 2023, doi: 10.3390/pr11092771.
M. Rudrapal et al., “Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action,” Front. Pharmacol., vol. 13, Feb. 2022, doi: 10.3389/fphar.2022.806470.
F. Afrin et al., “Evaluation of antioxidant and antibacterial activities of some selected seaweeds from Saint Martin’s Island of Bangladesh,” Food Chem. Adv., vol. 3, p. 100393, Dec. 2023, doi:10.1016/j.focha.2023.100393.
M. K. A. Sobuj et al., “Evaluation of bioactive chemical composition, phenolic, and antioxidant profiling of different crude extracts of Sargassum coriifolium and Hypnea pannosa seaweeds,” J. Food Meas. Charact., vol. 15, pp. 1653–1665, Nov. 2021, doi:10.1007/s11694-020-00758-w.
V. Subbiah et al., “Comparative study on the effect of phenolics and their antioxidant potential of freeze-dried Australian beach-cast seaweed species upon different extraction methodologies,” Pharmaceuticals, vol. 16, no. 5, p. 773, May 2023, doi: 10.3390/ph16050773.
T. Gunathilake et al., “Seaweed phenolics as natural antioxidants, aquafeed additives, veterinary treatments and cross-linkers for microencapsulation,” Mar. Drugs, vol. 20, no. 7, p. 445, Jul. 2022, doi:10.3390/md20070445.
A. Nofal et al., “Evaluation of the brown alga, Sargassum muticum extract as an antimicrobial and feeding additives,” Braz. J. Biol., vol. 84, Jan. 2024, doi: 10.1590/1519-6984.259721.
A. D. Premarathna et al., “Polysaccharides from red seaweeds: Effect of extraction methods on physicochemical characteristics and antioxidant activities,” Food Hydrocoll., vol. 147, p. 109307, Feb. 2024, doi: 10.1016/j.foodhyd.2023.109307.
R. A. Sultan et al., “Physical, mechanical barrier, antibacterial properties, and functional group of carrageenan-based edible film as influenced by pectin from Dillenia serrata fruit peel and curcumin,” Curr. Res. Nutr. Food Sci., vol. 11, no. 3, pp. 1308–1321, Dec. 2023, doi: 10.12944/crnfsj.11.3.32.
J. Zhao et al., “Preparation and application of edible agar-based composite films modified by cellulose nanocrystals,” Food Packag. Shelf Life, vol. 34, p. 100936, Dec. 2022, doi:10.1016/j.fpsl.2022.100936.
J. V. Gemida, R. A. Ardeña, and C. T. Pillones, “Shelf life of tomato (Solanum lycopersicum) in different post-harvest treatments,” Zenodo (CERN European Organization for Nuclear Research), Jun. 2023, doi:10.5281/zenodo.8139508.
S. Zhao et al., “Shelf-life extension of Pacific white shrimp (Litopenaeus vannamei) using sodium alginate/chitosan incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 during cold storage,” J. Food Sci., vol. 89, no. 4, pp. 1976–1987, Mar. 2024, doi: 10.1111/1750-3841.16969.
S. Mahendran et al., “In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched Gracilaria edulis and robust sea moss Hypnea valentiae,” Toxicol. Rep., vol. 8, pp. 1404–1411, Jan. 2021, doi: 10.1016/j.toxrep.2021.07.006.
J. H. Baek, S. Y. Lee, and S. W. Oh, “Enhancing safety and quality of shrimp by nanoparticles of sodium alginate-based edible coating containing grapefruit seed extract,” Int. J. Biol. Macromol., vol. 189, pp. 84–90, Oct. 2021, doi: 10.1016/j.ijbiomac.2021.08.118.
R. R. Remya et al., “Bioactive potential of brown algae,” Adsorp. Sci. Technol., vol. 2022, pp. 1–13, May 2022, doi: 10.1155/2022/9104835.
N. Jayapala, M. K. Perumal, R. Baskaran, and B. Vallikannan, “Pharmacological importance of bioactive molecules of seaweeds,” in Sustainable Global Resources of Seaweeds: Food, Pharmaceutical and Health Applications, vol. 2, New York, NY: Springer, 2022, pp. 597–613.
M. I. Sáez et al., “Assessing the potential of algae extracts for extending the shelf life of rainbow trout (Oncorhynchus mykiss) fillets,” Foods, vol. 10, no. 5, p. 910, Apr. 2021, doi:10.3390/foods10050910.
A. Murugan et al., “Fabrication and characterization of Kappaphycus alvarezii biomass-based thin-film and its applications,” Food Hum., vol. 1, pp. 589–598, Dec. 2023, doi: 10.1016/j.foohum.2023.06.029.
B. Tanna et al., “Antioxidant, scavenging, reducing, and anti-proliferative activities of selected tropical brown seaweeds confirm the nutraceutical potential of Spatoglossum asperum,” Foods, vol. 10, no. 10, p. 2482, Oct. 2021, doi: 10.3390/foods10102482.
H. Dysjaland et al., “Mechanical, barrier, antioxidant and antimicrobial properties of alginate films: Effect of seaweed powder and plasma-activated water,” Molecules, vol. 27, no. 23, p. 8356, Nov. 2022, doi: 10.3390/molecules27238356.
C. Muzeza, V. Ngole-Jeme, and T. A. M. Msagati, “The mechanisms of plastic food-packaging monomers’ migration into food matrix and the implications on human health,” Foods, vol. 12, no. 18, p. 3364, Sep. 2023, doi: 10.3390/foods12183364.
K. Y. Perera et al., “Seaweed polysaccharide in food contact materials (active packaging, intelligent packaging, edible films, and coatings),” Foods, vol. 10, no. 9, p. 2088, Sep. 2021, doi:10.3390/foods10092088.
EU Commission, “Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs,” Off. J. Eur. Union, vol. 173, no. 6–9, 2008.
Commission Regulation (EU) No 1275/2013, 2013. [Online]. Available: https://www.legislation.gov.uk/eur/2013/1275.
L. N. Barandiaran, V. F. Taylor, and M. R. Karagas, “Exposure to iodine, essential and non-essential trace elements through seaweed consumption in humans,” Sci. Rep., vol. 14, no. 1, Jun. 2024, doi:10.1038/s41598-024-64556-w.
V. Anbazhagan et al., “Health risk assessment and bioaccumulation of metals in brown and red seaweeds collected from a tropical marine biosphere reserve,” Mar. Pollut. Bull., vol. 164, p. 112029, Mar. 2021, doi: 10.1016/j.marpolbul.2021.112029.
M. Filippini et al., “Heavy metals and potential risks in edible seaweed on the market in Italy,” Chemosphere, vol. 263, p. 127983, Jan. 2021, doi: 10.1016/j.chemosphere.2020.127983.
M. A. M. Siddique et al., “Heavy metals and metalloids in edible seaweeds of Saint Martin’s Island, Bay of Bengal, and their potential health risks,” Mar. Pollut. Bull., vol. 181, p. 113866, Aug. 2022, doi:10.1016/j.marpolbul.2022.113866.
Z. Peng et al., “Species-specific bioaccumulation and health risk assessment of heavy metal in seaweeds in tropic coasts of South China Sea,” Sci. Total Environ., vol. 832, p. 155031, Aug. 2022, doi:10.1016/j.scitotenv.2022.155031.
K. Véliz et al., “Chemical composition and heavy metal content of Chilean seaweeds: Potential applications of seaweed meal as food and feed ingredients,” Food Chem., vol. 398, p. 133866, Jan. 2023, doi: 10.1016/j.foodchem.2022.133866.
CFDA (China Food and Drug Administration), “National food safety standards: Determination of acetanilide herbicide residues in cereals and oil seeds—Gas chromatography-mass spectrometry,” GB 23200.1-2016, 2017.
Commission Regulation (EC) No 710/2009, 2009. [Online]. Available: https://www.legislation.gov.uk/eur/2009/710/article/1/adopted
S. Charlebois et al., “Digital traceability in agri-food supply chains: A comparative analysis of OECD member countries,” Foods, vol. 13, no. 7, p. 1075, Apr. 2024, doi: 10.3390/foods13071075.
J. Mastilović et al., “Emerging perspectives of blockchains in food supply chain traceability based on patent analysis,” Foods, vol. 12, no. 5, p. 1036, Feb. 2023, doi: 10.3390/foods12051036.
R. Mamede et al., “Spatial variability of elemental fingerprints of sea lettuce (Ulva spp.) and its potential use to trace geographic origin,” Algal Res., vol. 59, p. 102451, Nov. 2021, doi:10.1016/j.algal.2021.102451.
M. Shafi et al., “Factors influencing the consumer acceptance of innovation in handicraft products,” SAGE Open, vol. 11, no. 4, p. 215824402110615, Oct. 2021, doi: 10.1177/21582440211061528.
M. Šostar and V. Ristanović, “Assessment of influencing factors on consumer behavior using the AHP model,” Sustainability, vol. 15, no. 13, p. 10341, Jun. 2023, doi: 10.3390/su151310341.
D. Hein, B. Ivens, and S. Müller, “Customer acceptance tests and new product success: An application of QCA in innovation research,” in 44th Conf. Eur. Mark. Acad., 2015. [Online]. Available: https://digitalcollection.zhaw.ch/handle/11475/13163
N. Alfaridi et al., “Do customers will accept seaweed packaging innovation?” in IOP Conf. Ser.: J. Phys., vol. 1573, p. 012020, 2020, doi: 10.1088/1742-6596/1573/1/012020.
V. Norton et al., “Exploring consumers’ understanding and perception of sustainable food packaging in the UK,” Foods, vol. 11, no. 21, p. 3424, Oct. 2022, doi: 10.3390/foods11213424.
C. Wang, J. Liu, R. Fan, and L. Xiao, “Promotion strategies for environmentally friendly packaging: A stochastic differential game perspective,” Int. J. Environ. Sci. Technol., vol. 20, no. 7, pp. 7559–7568, Sep. 2022, doi: 10.1007/s13762-022-04453-9.
P. Duarte et al., “Enhancing consumer purchase intentions for sustainable packaging products: An in-depth analysis of key determinants and strategic insights,” Sustain. Futures, vol. 7, p. 100193, Jun. 2024, doi: 10.1016/j.sftr.2024.100193.
D. Reynolds et al., “Seaweed proteins are nutritionally valuable components in the human diet,” Am. J. Clin. Nutr., vol. 116, no. 4, pp. 855–861, Oct. 2022, doi: 10.1093/ajcn/nqac190.
C. Mellor et al., “Consumer knowledge and acceptance of ‘algae’ as a protein alternative: A UK-based qualitative study,” Foods, vol. 11, no. 12, p. 1703, Jun. 2022, doi: 10.3390/foods11121703.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).