Performance of Paving Block Using Geopolymer Method with Slag and Fly Ash: A Review

Syafiadi Rizki Abdila (1), Yudi Harianto (2), Syafri Wardi (3), Agung Sumarno (4), Muhammad Faheem Mohd Tahir (5), Syafwandi (6)
(1) Research Center for Structural Strength Technology, National Research and Innovation Agency, BJ Habibie Science and Technology Center, Tangerang, Indonesia
(2) Directorate General of Vocational Higher Education, Jakarta, Indonesia
(3) Research Center for Structural Strength Technology, National Research and Innovation Agency, BJ Habibie Science and Technology Center, Tangerang, Indonesia.
(4) Research Center for Structural Strength Technology, National Research and Innovation Agency, BJ Habibie Science and Technology Center, Tangerang, Indonesia
(5) Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
(6) Faculty of Civil Engineering, Putra Indonesia University “YPTK”, Padang, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
[1]
S. R. Abdila, Y. Harianto, S. Wardi, A. Sumarno, M. F. Mohd Tahir, and Syafwandi, “Performance of Paving Block Using Geopolymer Method with Slag and Fly Ash: A Review”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 81–88, Feb. 2025.
Geopolymers, commonly called alkali-activated binding, have emerged as an acceptable substitute for conventional binders (such as cement) in the mixtures used for paving blocks. The increasing interest of researchers in the geopolymer method for paving blocks is driven by the exploitation of pozzolanic material as a source material, which results in zero percent consumption and a hundred percent utilization. Furthermore, the decrease in CO2 emissions results from reduced cement consumption. The geopolymer method employs a primary source material rich in silica and alumina, as an alternative to cement. An alkali solution, along with Na₂SiO₃ and NaOH, is used to process and activate the polymerization process. The polymerization process results in the formation of chains and bonds of silicon-oxygen aluminum, which improves the physical and mechanical qualities of the paving block. These paving blocks prefer curing methods at both room temperature and oven. The objective of this paper is to evaluate the efficacy of paving blocks that are composed of geopolymers based on ground granulated blast slag (GGBS) and fly ash. This study specifically examined the precursors of the waste industry, namely GGBS and fly ash. The results of tests measuring the unconfined compression strength (UCS) and water absorption of paving block samples were analyzed and discussed. The paper ultimately concludes that the fly ash and GGBS-based geopolymers have been effectively employed as binders in the paving block mixture. Nevertheless, further research is necessary to satisfy the SNI 03-0691-1996 standard's requirements for road construction applications.

N. Chairunnisa, R. T. June, R. Nurwidayati, and A. Y. Pratiwi, “The influence of curing treatments on compressive strength and durability of geopolymer paving blocks,” E3S Web Conf., vol. 476, p. 01036, 2024, doi: 10.1051/e3sconf/202447601036.

R. Nurwidayati, I. Saniah, N. Chairunnisa, and A. Y. Pratiwi, “The effect of bottom ash as partial replacement of fine aggregate in different NaOH molarities on the compressive strength of geopolymer mortar,” E3S Web Conf., vol. 476, p. 01031, 2024, doi:10.1051/e3sconf/202447601031.

J. Davidovits, “Geopolymer cement: A review,” Geopolymer Sci. Technics, Tech. Paper 21, Geopolymer Institute, Saint-Quentin, France, 2013.

A. Hassan, M. Arif, and M. Shariq, “Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure,” J. Clean. Prod., vol. 223, pp. 704–728, Jun. 2019, doi: 10.1016/j.jclepro.2019.03.051.

K. Srinivasan and A. Sivakumar, “Geopolymer binders: A need for future concrete construction,” ISRN Polym. Sci., vol. 2013, pp. 1–8, Jul. 2013, doi: 10.1155/2013/509185.

M. Hosseini, A. R. Dolatshahi, and E. Ramezani, “Effect of acid rain on physical and mechanical properties of concrete containing micro-silica and limestone powder,” J. Min. Environ., vol. 13, no. 1, pp. 185–200, 2022, doi: 10.22044/jme.2022.11491.2137.

S. R. Abdila et al., “Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process,” Materials, vol. 14, no. 11, p. 2833, May 2021, doi: 10.3390/ma14112833.

M. Sofyan et al., “Kinerja pozzolan glasspowder pada karakteristik mekanis dan fisis paving blok geopolimer,” Borneo Eng. J. Tek. Sipil, vol. 1, no. 1, pp. 15–24, Apr. 2023, doi: 10.35334/be.v1i1.3318.

A. Susilowati, L. Aprilia, and K. A. Simanullang, “Bata beton (paving block) geopolimer dengan variasi konsentrasi serat sabut kelapa,” J. Poli-Teknol., vol. 15, no. 1, Apr. 2016, doi: 10.32722/pt.v15i1.786.

S. Sengkey, P. N. Manado, S. L. Sengkey, G. E. Kandiyoh, V. B. Slat, and C. Hombokau, “Design engineering properties of geopolymer paving blocks based on fly ash with bottom ash as a sand substitution,” Des. Eng., no. 1, pp. 154–163, 2023.

S. Kavipriya, “Geopolymer concrete paver blocks: A review,” Sustain. Mater. Smart Pract., vol. 23, pp. 284–289, May 2022, doi:10.21741/9781644901953-32.

A. Aman, A. Awaluddin, A. Ahmad, and M. Olivia, “Parametric study on the compressive strength of geopolymer paving block,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 345, p. 012018, Apr. 2018, doi:10.1088/1757-899X/345/1/012018.

N. Al-Obeidy and W. Khalil, “Studying the possibility of producing paving flags from geopolymer concrete containing local wastes,” Eng. Technol. J., vol. 0, no. 0, pp. 1–12, Sep. 2023, doi:10.30684/etj.2023.141321.1494.

A. S. Handoko, M. Amin, L. Zulaifa, and Syafriadi, “The influence of various slag mineral concentrations to physical properties of paving block products and its characteristic,” IOP Conf. Ser.: Earth Environ. Sci., vol. 483, no. 1, p. 012004, Mar. 2020, doi: 10.1088/1755-1315/483/1/012004.

T. Zhang, X. Shi, Q. Wang, and W. Peng, “Comprehensive evaluation of the performance and benefits of SSA–GGBS geopolymer mortar,” Materials, vol. 16, no. 11, p. 4137, Jun. 2023, doi:10.3390/ma16114137.

M. Zhang, H. Guo, T. El-Korchi, G. Zhang, and M. Tao, “Experimental feasibility study of geopolymer as the next-generation soil stabilizer,” Constr. Build. Mater., vol. 47, pp. 1468–1478, Oct. 2013, doi: 10.1016/j.conbuildmat.2013.06.017.

Z. Xu, J. Yue, G. Pang, R. Li, P. Zhang, and S. Xu, “Influence of the activator concentration and solid/liquid ratio on the strength and shrinkage characteristics of alkali-activated slag geopolymer pastes,” Adv. Civ. Eng., vol. 2021, no. 1, Jan. 2021, doi:10.1155/2021/6631316.

A. Tawalare, R. Kejkar, and M. Kumar, “Comparison of geopolymer paver block using natural aggregate and recycled aggregate as fine aggregate and slag as coarse aggregate,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 431, p. 092002, Nov. 2018, doi: 10.1088/1757-899X/431/9/092002.

M. Qomaruddin, H. A. Lie, A. Hidayat, Sudarno, and A. Kustirini, “Compressive strength analysis on geopolymer paving by using waste substitution of carbide waste and fly ash,” J. Phys.: Conf. Ser., vol. 1424, no. 1, p. 012052, Dec. 2019, doi: 10.1088/1742-6596/1424/1/012052.

A. C. Ganesh et al., “Development of alkali activated paver blocks for medium traffic conditions using industrial wastes and prediction of compressive strength using random forest algorithm,” Sci. Rep., vol. 13, no. 1, Sep. 2023, doi: 10.1038/s41598-023-42318-4.

S. R. Abdila et al., “Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review,” Materials, vol. 15, no. 1, p. 375, Jan. 2022, doi: 10.3390/ma15010375.

J. Xie and O. Kayali, “Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers,” Constr. Build. Mater., vol. 122, pp. 36–42, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.06.067.

X. Lu et al., “Mechanical properties and hydration of fly ash-based geopolymers modified by copper slag,” Mater. Today Commun., vol. 39, p. 108914, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108914.

S. Janga, A. N. Raut, and A. L. Murmu, “Assessment of thermal and mechanical properties of fly ash based geopolymer blocks with a sustainability perspective using multi-criteria decision-making approach,” J. Build. Eng., vol. 88, p. 109261, Jul. 2024, doi:10.1016/j.jobe.2024.109261.

M. Ben Ali et al., “Preparation of greener geopolymer binder based fly ash: An effective strategy toward carbon neutrality,” Ceram. Int., vol. 50, no. 15, pp. 27018–27026, Aug. 2024, doi:10.1016/j.ceramint.2024.04.434.

J. Li, Z. Ma, Y. Guo, and Z. Feng, “In-depth analysis of macro-properties and micro-mechanism of eco-friendly geopolymer based on typical circulating fluidized bed fly ash,” J. Build. Eng., vol. 95, p. 110074, Oct. 2024, doi: 10.1016/j.jobe.2024.110074.

B. Gopalakrishna and P. Dinakar, “An innovative approach to fly ash-based geopolymer concrete mix design: Utilizing 100% recycled aggregates,” Struct., vol. 66, p. 106819, Aug. 2024, doi:10.1016/j.istruc.2024.106819.

M. H. Ashfaq, M. B. Sharif, M. Irfan-ul-Hassan, U. U. Sahar, U. Akmal, and A. Mohamed, “Up-scaling of fly ash-based geopolymer concrete to investigate the binary effect of locally available metakaolin with fly ash,” Heliyon, vol. 10, no. 4, p. e26331, Feb. 2024, doi:10.1016/j.heliyon.2024.e26331.

N. Toobpeng, P. Thavorniti, and S. Jiemsirilers, “Effect of additives on the setting time and compressive strength of activated high-calcium fly ash-based geopolymers,” Constr. Build. Mater., vol. 417, p. 135035, Feb. 2024, doi: 10.1016/j.conbuildmat.2024.135035.

W. Xu, X. Niu, and Y. Zhu, “Deformation behavior and damage evaluation of fly ash-slag based geopolymer concrete under cyclic tension,” J. Build. Eng., vol. 86, p. 108664, Jun. 2024, doi:10.1016/j.jobe.2024.108664.

P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer, “Geopolymer technology: The current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, Dec. 2006, doi: 10.1007/s10853-006-0637-z.

S. N. Mahdi, D. V. B. R, N. Hossiney, and M. M. A. B. Abdullah, “Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash,” Case Stud. Constr. Mater., vol. 16, p. e00800, Jun. 2022, doi: 10.1016/j.cscm.2021.e00800.

Radhakrishna, “Design and properties of fly ash, ground granulated blast furnace slag, silica fume and metakaolin geopolymeric based masonry blocks,” in Eco-Efficient Masonry Bricks and Blocks, pp. 329–358, 2015, doi: 10.1016/B978-1-78242-305-8.00015-2.

M. Ju, K. Rashid, I. Zafar, and M. Ltifi, “Developing FA-based cementless binder composite by opting sustainable technology: Application of brick and paving block,” Eng. Sci. Technol., Int. J., vol. 48, p. 101580, Dec. 2023, doi: 10.1016/j.jestch.2023.101580.

M. T. S. Sachin and A. A. Verma, “A review of paver block with fly ash addition,” Int. J. Sci. Res. Eng. Trends, vol. 8, no. 1, pp. 2395–2566, 2022.

B. Mehdikhani, B. S. Razavi, J. Ahmadi, and A. Goharrokhi, “The effect of adding nano-silica on the ultrasonic pulse velocity of geopolymer concrete,” J. Part. Sci. Technol., vol. 7, no. 2, pp. 99–105, 2021, doi: 10.22104/jpst.2022.5334.1198.

J. L. Provis, “Alkali-activated materials,” Cem. Concr. Res., vol. 114, pp. 40–48, Dec. 2018, doi: 10.1016/j.cemconres.2017.02.009.

V. Revathi, J. Thaarrini, and M. V. Rao, “A prospective study on alkali activated bottom ash-GGBS blend in paver blocks,” Int. J. Civ. Environ. Eng., vol. 8, pp. 291–298, 2014.

P. Malliga, J. Ashthavamoorthy, and M. Hiran, “Paver blocks by using fly ash and GGBS (geopolymer concrete),” Int. J. Eng. Res. Technol. (IJERT), vol. 8, no. 12, pp. 2278–0181, 2019.

T. Nugroho, M. A. Salsabila, M. L. D. Wardani, and G. Otivriyanti, “Utilization of andesite stone waste and fly ash as geopolymer pavement block materials,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1267, no. 1, p. 012027, Dec. 2023, doi: 10.1088/1755-1315/1267/1/012027.

I. H. Aziz, M. M. A. B. Abdullah, M. A. A. M. Salleh, E. A. Azimi, J. Chaiprapa, and A. V. Sandu, “Strength development of solely ground granulated blast furnace slag geopolymers,” Constr. Build. Mater., vol. 250, p. 118720, Jul. 2020, doi: 10.1016/j.conbuildmat.2020.118720.

A. M. M. Al Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. R. Rafiza, and A. M. Izzat, “Chemical reactions in the geopolymerisation process using fly ash-based geopolymer: A review,” J. Appl. Sci. Res., vol. 7, pp. 1199–1203, 2011.

S. N. I., “Standar Nasional Indonesia Badan Standardisasi Nasional Bata Beton (Paving Block),” Jakarta, Indonesia, 1996.

T. Srividya and P. R. K. Rajkumar, “Mechanical and durability properties of alkali-activated binders based paver blocks derived from secondary sources,” Case Stud. Constr. Mater., vol. 17, p. e01561, Dec. 2022, doi: 10.1016/j.cscm.2022.e01561.

A. A. S. Tigue, J. R. Dungca, H. Hinode, W. Kurniawan, and M. A. B. Promentilla, “Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash,” MATEC Web Conf., vol. 156, p. 05017, 2018, doi: 10.1051/matecconf/201815605017.

A. A. S. Tigue, R. A. J. Malenab, J. R. Dungca, D. E. C. Yu, and M. A. B. Promentilla, “Chemical stability and leaching behavior of one-part geopolymer from soil and coal fly ash mixtures,” Minerals, vol. 8, no. 9, p. 411, Sep. 2018, doi: 10.3390/min8090411.

A. B. Malkawi, M. F. Nuruddin, A. Fauzi, H. Almattarneh, and B. S. Mohammed, “Effects of alkaline solution on properties of the HCFA geopolymer mortars,” Procedia Eng., vol. 148, pp. 710–717, 2016, doi:10.1016/j.proeng.2016.06.581.

B. Tempest, O. Sanusi, J. Gergely, V. Ogunro, and D. Weggel, “Compressive strength and embodied energy optimization of fly ash-based geopolymer concrete,” in Proc. 3rd World Coal Ash Conf. (WOCA), Lexington, KY, USA, May 4–7, 2009, vol. 1, pp. 1–17.

S. L. Sengkey, G. E. Kandiyoh, V. B. Slat, and C. Hombokau, “Properties of geopolymer paving blocks based on fly ash with bottom ash as a sand substitution,” Des. Eng., no. 1, pp. 154–163, 2023.

A. Petrillo, R. Cioffi, F. De Felice, F. Colangelo, and C. Borrelli, “An environmental evaluation: A comparison between geopolymer and OPC concrete paving blocks manufacturing process in Italy,” Environ. Prog. Sustain. Energy, vol. 35, no. 6, pp. 1699–1708, Jul. 2016, doi:10.1002/ep.12421.

S. Jamkar, Y. Ghugal, and S. Patankar, “Effect of fly ash fineness on workability and compressive strength of geopolymer concrete,” Indian Concr. J., vol. 87, pp. 57–61, 2013.

M. Thakur and S. Bawa, “Evaluation of strength and durability properties of fly ash-based geopolymer concrete containing GGBS and dolomite,” Energy, Ecol. Environ., vol. 9, no. 3, pp. 256–271, Dec. 2023, doi: 10.1007/s40974-023-00309-1.

A. Kuncoro and H. S. Djayaprabha, “The effect of sodium hydroxide molarity on the compressive and splitting tensile strength of ferronickel slag-based alkali activated mortar,” Media Komun. Tek. Sipil, vol. 27, no. 2, pp. 151–160, 2021.

I. H. Aziz, “Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature,” Adv. Cem. Res., vol. 32, no. 10, pp. 465–475, 2019.

I. H. Aziz et al., “The characterization of steel slag by alkali activation,” OALib, vol. 4, no. 11, pp. 1–13, 2017, doi:10.4236/oalib.1103816.

E. Özbay, M. Erdemir, and H. İ. Durmuş, “Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review,” Constr. Build. Mater., vol. 105, pp. 423–434, Feb. 2016, doi:10.1016/j.conbuildmat.2015.12.153.

N. Hossiney, H. K. Sepuri, M. K. Mohan, S. C. K, S. L. Kumar, and T. H. K, “Geopolymer concrete paving blocks made with recycled asphalt pavement (RAP) aggregates towards sustainable urban mobility development,” Cogent Eng., vol. 7, no. 1, Jan. 2020, doi:10.1080/23311916.2020.1824572.

H. Alanazi, “Study of the interfacial transition zone characteristics of geopolymer and conventional concretes,” Gels, vol. 8, no. 2, p. 105, Feb. 2022, doi: 10.3390/gels8020105.

E. S. Sunarsih, S. As’ad, A. R. M. Sam, and S. A. Kristiawan, “Properties of fly ash-slag-based geopolymer concrete with low molarity sodium hydroxide,” Civ. Eng. J., vol. 9, no. 2, pp. 381–392, Feb. 2023, doi: 10.28991/cej-2023-09-02-010.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).