Evaluating the Physicochemical and Structural Properties of Collagen from Lizardfish (Saurida tumbil Bloch, 1795) Skin Prepared with the Optimal Enzymatic Process: in Comparison with Recent Studies

Abdul Aziz Jaziri (1), Rossita Shapawi (2), Ruzaidi Azli Mohd Mokhtar (3), Wan Norhana Md. Noordin (4), Siti Balqis Zulfigar (5), Rahmi Nurdiani (6), Sukoso (7), Nurul Huda (8)
(1) Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Sabah, Malaysia
(2) Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
(3) Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
(4) Fisheries Research Institute, Batu Maung, Penang, Malaysia
(5) School of Industrial Technology, Universiti Sains Malaysia, Penang Malaysia
(6) Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
(7) Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
(8) Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
[1]
A. A. Jaziri, “Evaluating the Physicochemical and Structural Properties of Collagen from Lizardfish (Saurida tumbil Bloch, 1795) Skin Prepared with the Optimal Enzymatic Process: in Comparison with Recent Studies”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 138–146, Feb. 2025.
Marine fish byproducts are quiet potential raw material for protein-based commodities like collagen. Due to their abundant resources, safer from many zoonosis, and great biocompatibility, marine collagens are regarded as an ideal candidate biopolymer for such research and medical applications. Although lizardfish (Saurida tumbil Bloch, 1795) skin collagen had been extracted optimally by our previous research, the characterization of its physicochemical and microstructural properties has been reported yet. Thus, the aim of this article was to evaluate the characteristic of the pepsin soluble collagen (PSC) from lizardfish skin prepared using the optimal extraction process. The obtained PSC was categorized as type I collagen, as evidenced by the existence of two alpha chains following electrophoresis in acrylamide gel, and its imino acid was 187.54 residues/1000 residues. Analysis using ultraviolet-visible (UV-vis) techniques verified that the extracted collagen displayed an absorption peak at 232 nm, consistent with various fish collagens. The triple helical structure of PSC was preserved after being confirmed through X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR) tests. In terms of thermostability, the type I PSC exhibited high maximum transition temperature (Tmax = 36.74°C). At low NaCl and acidic conditions, the relative solubility of optimized collagen was high (more than 80%). The PSC showed many multilayered forms with dense sheet-like film. Overall, the type I collagen processed optimally from the skin of lizardfish could be used as a promising source of biomaterials for industrial viewpoint.

S. Lo and M. B. Fauzi, “Current update of collagen nanomaterials—fabrication, characterisation and its applications: A review,” Pharmaceutics, vol. 13, no. 3, p. 316, Feb. 2021, doi:10.3390/pharmaceutics13030316.

Y.-S. Lim, Y.-J. Ok, S.-Y. Hwang, J.-Y. Kwak, and S. Yoon, “Marine collagen as a promising biomaterial for biomedical applications,” Mar. Drugs, vol. 17, no. 8, p. 467, Aug. 2019, doi:10.3390/md17080467.

L. Arseni, A. Lombardi, and D. Orioli, “From structure to phenotype: Impact of collagen alterations on human health,” Int. J. Mol. Sci., vol. 19, no. 5, p. 1407, May 2018, doi: 10.3390/ijms19051407.

A. Sorushanova et al., “The collagen suprafamily: From biosynthesis to advanced biomaterial development,” Adv. Mater., vol. 31, no. 1, Aug. 2018, doi: 10.1002/adma.201801651.

S. Bose, S. Li, E. Mele, and V. V. Silberschmidt, “Exploring the mechanical properties and performance of type-I collagen at various length scales: A progress report,” Materials, vol. 15, no. 8, p. 2753, Apr. 2022, doi: 10.3390/ma15082753.

A. A. Jaziri, R. Shapawi, R. A. Mohd Mokhtar, W. N. Md. Noordin, and N. Huda, “Biochemical analysis of collagens from the bone of lizardfish (Saurida tumbil Bloch, 1795) extracted with different acids,” PeerJ, vol. 10, p. e13103, Mar. 2022, doi:10.7717/peerj.13103.

A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Microstructural and physicochemical analysis of collagens from the skin of lizardfish (Saurida tumbil Bloch, 1795) extracted with different organic acids,” Molecules, vol. 27, no. 8, p. 2452, Apr. 2022, doi: 10.3390/molecules27082452.

N. S. Fatiroi, A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Biochemical and microstructural characteristics of collagen biopolymer from unicornfish (Naso reticulatus Randall, 2001) bone prepared with various acid types,” Polymers, vol. 15, no. 4, p. 1054, Feb. 2023, doi:10.3390/polym15041054.

FAO, The State of World Fisheries and Aquaculture 2022. FAO, 2022, doi: 10.4060/cc0461en.

A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Chemical composition of lizardfish surimi by-product: Focus on macro and micro-minerals contents,” Curr. Res. Nutr. Food Sci. J., vol. 9, no. 1, pp. 52–61, Apr. 2021, doi: 10.12944/crnfsj.9.1.06.

A. A. Jaziri et al., “Byproducts of tropical marine processing as a candidate for industrial food ingredients: An appraisal on macro and micronutrients,” ASEAN J. Sci. Technol. Dev., vol. 40, no. 2, Jan. 2024, doi: 10.61931/2224-9028.1536.

A. A. Jaziri, R. Shapawi, R. A. Mohd Mokhtar, W. N. Md. Noordin, and N. Huda, “Tropical marine fish surimi by-products: Utilisation and potential as functional food application,” Food Rev. Int., vol. 39, no. 6, pp. 3455–3480, Dec. 2021, doi: 10.1080/87559129.2021.2012794.

I. Normah and M. Z. Nur-Hani Suryati, “Isolation of threadfin bream (Nemipterus japonicus) waste collagen using natural acid from calamansi (Citrofortunella microcarpa) juice,” Int. Food Res. J., vol. 22, no. 6, pp. 2294–2301, 2015.

H. Hasanuddin, A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. M. Noordin, and N. Huda, “Effect of different acids during collagen extraction from the bone and fins of purple-spotted bigeye (Priacanthus tayenus Richardson, 1846) and their physicochemical properties,” Food Res., vol. 8, no. 1, pp. 326–335, Feb. 2024, doi:10.26656/fr.2017.8(1).224.

N. N. Matarsim, A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Type I collagen from the skin of barracuda (Sphyraena sp.) prepared with different organic acids: Biochemical, microstructural, and functional properties,” J. Funct. Biomater., vol. 14, no. 2, p. 87, Feb. 2023, doi: 10.3390/jfb14020087.

S. Iswariya, P. Velswamy, and T. S. Uma, “Isolation and characterization of biocompatible collagen from the skin of puffer fish (Lagocephalus inermis),” J. Polym. Environ., vol. 26, no. 5, pp. 2086–2095, Sep. 2017, doi: 10.1007/s10924-017-1107-1.

C. C. A. Patrick et al., “Unicorn fish (Naso reticulatus Randall, 2001) skin collagens prepared using two pepsin sources: An assessment on physicochemical characteristics,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 1, pp. 164–170, Feb. 2024, doi:10.18517/ijaseit.14.1.19656.

D. F. Harianto et al., “Assessing the organic acids-solubilized collagen derived from the skin of unicornfish (Naso reticulatus Randall, 2011) on physicochemical and structural characteristics: Toward alternative source for industrial applications,” ASEAN J. Sci. Technol. Dev., vol. 40, no. 2, Jan. 2024, doi: 10.61931/2224-9028.1535.

I. Normah and M. Afiqah, “Effect of extraction time on the physico-chemical characteristics of collagen from sin croaker (Johniecop sina) waste,” Int. Food Res. J., vol. 25, no. 3, pp. 1074–1080, 2018.

S. Chuaychan, S. Benjakul, and H. Kishimura, “Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer),” LWT - Food Sci. Technol., vol. 63, no. 1, pp. 71–76, Sep. 2015, doi: 10.1016/j.lwt.2015.03.002.

A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Extraction and characterization of type I collagen from parrotfish (Scarus sordidus Forsskål, 1775) scale solubilized with the aid of acetic acid and pepsin,” Int. J. Biomater., vol. 2023, pp. 1–10, Apr. 2023, doi: 10.1155/2023/7312447.

J. Cao, Q. Duan, X. Liu, X. Shen, and C. Li, “Extraction and physicochemical characterization of pepsin soluble collagens from golden pompano (Trachinotus blochii) skin and bone,” J. Aquat. Food Prod. Technol., vol. 28, no. 8, pp. 837–847, Aug. 2019, doi:10.1080/10498850.2019.1652216.

F. S. Hamdan and N. M. Sarbon, “Isolation and characterisation of collagen from fringescale sardinella (Sardinella fimbriata) waste materials,” 2019.

T. Y. Ong, M. I. Shaik, and N. M. Sarbon, “Isolation and characterization of acid and pepsin soluble collagen extracted from sharpnose stingray (Dasyatis zugei) skin,” Food Res., vol. 5, no. 3, Dec. 2020, doi: 10.26656/fr.2017.5(3).322.

Department of Fisheries Malaysia, “Fisheries statistics I,” Feb. 2023. [Online]. Available: https://www.dof.gov.my/en/resources/fisheries-statistics-i/

A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Biochemical and microstructural properties of lizardfish (Saurida tumbil) scale collagen extracted with various organic acids,” Gels, vol. 8, no. 5, p. 266, Apr. 2022, doi:10.3390/gels8050266.

A. A. Jaziri, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Physicochemical and microstructural analyses of pepsin-soluble collagens derived from lizardfish (Saurida tumbil Bloch, 1795) skin, bone, and scales,” Gels, vol. 8, no. 8, p. 471, Jul. 2022, doi:10.3390/gels8080471.

U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, Aug. 1970, doi: 10.1038/227680a0.

W. Liao, X. Guanghua, Y. Li, X. R. Shen, and C. Li, “Comparison of characteristics and fibril-forming ability of skin collagen from barramundi (Lates calcarifer) and tilapia (Oreochromis niloticus),” Int. J. Biol. Macromol., vol. 107, pp. 549–559, Feb. 2018, doi: 10.1016/j.ijbiomac.2017.09.022.

P. Kittiphattanabawon, C. Sriket, H. Kishimura, and S. Benjakul, “Characteristics of acid and pepsin solubilized collagens from Nile tilapia (Oreochromis niloticus) scale,” Emir. J. Food Agric., p. 95, Mar. 2019, doi: 10.9755/ejfa.2019.v31.i2.1911.

J. Chen et al., “Physicochemical and functional properties of type I collagens in red stingray (Dasyatis akajei) skin,” Mar. Drugs, vol. 17, no. 10, p. 558, Sep. 2019, doi: 10.3390/md17100558.

K. Matmaroh, S. Benjakul, T. Prodpran, A. B. Encarnacion, and H. Kishimura, “Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus),” Food Chem., vol. 129, no. 3, pp. 1179–1186, Dec. 2011, doi: 10.1016/j.foodchem.2011.05.099.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” J. Biol. Chem., vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/s0021-9258(19)52451-6.

A. A. Jaziri, R. Shapawi, R. A. Mohd Mokhtar, W. N. Md. Noordin, S. B. Zulfigar, and H. Nurul, “Optimization process of the pepsin-solubilized collagen from lizardfish (Saurida tumbil Bloch, 1795) skins by-product,” Indones. Food Sci. Technol. J., vol. 7, no. 1, pp. 1–8, Dec. 2023, doi: 10.22437/ifstj.v7i1.30797.

S. N. H. Oslan, R. Shapawi, R. A. M. Mokhtar, W. N. Md. Noordin, and N. Huda, “Characterization of acid- and pepsin-soluble collagen extracted from the skin of purple-spotted bigeye snapper,” Gels, vol. 8, no. 10, p. 665, Oct. 2022, doi: 10.3390/gels8100665.

S. Benjakul et al., “Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus),” J. Sci. Food Agric., vol. 90, no. 1, pp. 132–138, Jan. 2010, doi: 10.1002/jsfa.3795.

E. A. Foegeding, T. C. Lanier, and H. O. Hultin, “Characteristics of edible muscle tissues,” in Food Chemistry, O. R. Fennema, Ed., New York, NY, USA: Marcel Dekker, Inc., 1996, pp. 902–906.

J. Li et al., “Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering,” Process Biochem., vol. 74, pp. 156–163, Nov. 2018, doi:10.1016/j.procbio.2018.07.009.

L. Sun, B. Li, W. Song, L. Si, and H. Hou, “Characterization of Pacific cod (Gadus macrocephalus) skin collagen and fabrication of collagen sponge as a good biocompatible biomedical material,” Process Biochem., vol. 63, pp. 229–235, Dec. 2017, doi:10.1016/j.procbio.2017.08.003.

Z.-R. Li et al., “Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius),” Food Hydrocolloids, vol. 31, no. 1, pp. 103–113, May 2013, doi:10.1016/j.foodhyd.2012.10.001.

J.-W. Woo, S.-J. Yu, S.-M. Cho, Y.-B. Lee, and S.-B. Kim, “Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin,” Food Hydrocolloids, vol. 22, no. 5, pp. 879–887, Jul. 2008, doi: 10.1016/j.foodhyd.2007.04.015.

S. Tamilmozhi, A. Veeruraj, and M. Arumugam, “Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus),” Food Res. Int., vol. 54, no. 2, pp. 1499–1505, Dec. 2013, doi: 10.1016/j.foodres.2013.10.002.

H.-S. Jeong, J. Venkatesan, and S.-K. Kim, “Isolation and characterization of collagen from marine fish (Thunnus obesus),” Biotechnol. Bioprocess Eng., vol. 18, no. 6, pp. 1185–1191, Nov. 2013, doi: 10.1007/s12257-013-0316-2.

M. J. Seixas, E. Martins, R. L. Reis, and T. H. Silva, “Extraction and characterization of collagen from elasmobranch byproducts for potential biomaterial use,” Mar. Drugs, vol. 18, no. 12, p. 617, Dec. 2020, doi: 10.3390/md18120617.

A. M. D. G. Plepis, G. Goissis, and D. K. Das-Gupta, “Dielectric and pyroelectric characterization of anionic and native collagen,” Polym. Eng. Sci., vol. 36, no. 24, pp. 2932–2938, Dec. 1996, doi:10.1002/pen.10694.

S. Chen et al., “Rapid isolation of high purity pepsin-soluble type I collagen from scales of red drum fish (Sciaenops ocellatus),” Food Hydrocolloids, vol. 52, pp. 468–477, Jan. 2016, doi:10.1016/j.foodhyd.2015.07.027.

B. B. Doyle, E. G. Bendit, and E. R. Blout, “Infrared spectroscopy of collagen and collagen-like polypeptides,” Biopolymers, vol. 14, no. 5, pp. 937–957, May 1975, doi: 10.1002/bip.1975.360140505.

F. Yu et al., “Optimization of extraction conditions and characterization of pepsin-solubilised collagen from skin of giant croaker (Nibea japonica),” Mar. Drugs, vol. 16, no. 1, p. 29, Jan. 2018, doi: 10.3390/md16010029.

J. Wang, X. Pei, H. Liu, and D. Zhou, “Extraction and characterization of acid-soluble and pepsin-soluble collagen from skin of loach (Misgurnus anguillicaudatus),” Int. J. Biol. Macromol., vol. 106, pp. 544–550, Jan. 2018, doi: 10.1016/j.ijbiomac.2017.08.046.

N. Reátegui-Pinedo et al., “Characterization of collagen from three genetic lines (gray, red, and F1) of Oreochromis niloticus (tilapia) skin in young and old adults,” Molecules, vol. 27, no. 3, p. 1123, Feb. 2022, doi: 10.3390/molecules27031123.

M.-M. Giraud-Guille, L. Besseau, C. Chopin, P. Durand, and D. Herbage, “Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states,” Biomaterials, vol. 21, no. 9, pp. 899–906, May 2000, doi: 10.1016/s0142-9612(99)00244-6.

W. Savedboworn, P. Kittiphattanabawon, S. Benjakul, S. Sinthusamran, and H. Kishimura, “Characteristics of collagen from rohu (Labeo rohita) skin,” J. Aquat. Food Prod. Technol., vol. 26, no. 3, pp. 248–257, Jun. 2016, doi: 10.1080/10498850.2015.1133747.

H. Wang, Y. Liang, H. Wang, H. Zhang, M. Wang, and L. Liu, “Physical-chemical properties of collagens from skin, scale, and bone of grass carp (Ctenopharyngodon idellus),” J. Aquat. Food Prod. Technol., vol. 23, no. 3, pp. 264–277, Apr. 2014, doi:10.1080/10498850.2012.713450.

S. Zeng, J. Yin, S. Yang, C. Zhang, P. Yang, and W. Wu, “Structure and characteristics of acid and pepsin-solubilized collagens from the skin of cobia (Rachycentron canadum),” Food Chem., vol. 135, no. 3, pp. 1975–1984, Dec. 2012, doi: 10.1016/j.foodchem.2012.06.086.

Z. E. Sikorski, D. N. Scott, D. H. Buisson, and R. M. Love, “The role of collagen in the quality and processing of fish,” CRC Crit. Rev. Food Sci. Nutr., vol. 20, no. 4, pp. 301–343, Jan. 1984, doi:10.1080/10408398409527393.

T. Schuetz, N. Richmond, M. E. Harmon, J. Schuetz, L. Castaneda, and K. Slowinska, “The microstructure of collagen type I gel cross-linked with gold nanoparticles,” Colloids Surf. B Biointerfaces, vol. 101, pp. 118–125, Jan. 2013, doi: 10.1016/j.colsurfb.2012.06.006.

A. Veeruraj, M. Arumugam, and T. Balasubramanian, “Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura),” Process Biochem., vol. 48, no. 10, pp. 1592–1602, Oct. 2013, doi: 10.1016/j.procbio.2013.07.011.

M. V. Bhuimbar, P. K. Bhagwat, and P. B. Dandge, “Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film,” J. Environ. Chem. Eng., vol. 7, no. 2, p. 102983, Apr. 2019, doi:10.1016/j.jece.2019.102983.

L.-Y. Li, Y.-Q. Zhao, Y. He, C.-F. Chi, and B. Wang, “Physicochemical and antioxidant properties of acid- and pepsin-soluble collagens from the scales of miiuy croaker (Miichthys miiuy),” Mar. Drugs, vol. 16, no. 10, p. 394, Oct. 2018, doi:10.3390/md16100394.

J. Chen, L. Li, R. Yi, N. Xu, R. Gao, and B. Hong, “Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus),” LWT - Food Sci. Technol., vol. 66, pp. 453–459, Mar. 2016, doi: 10.1016/j.lwt.2015.10.070.

R. Ahmed, M. Haq, and B.-S. Chun, “Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus),” Int. J. Biol. Macromol., vol. 135, pp. 668–676, Aug. 2019, doi: 10.1016/j.ijbiomac.2019.05.213.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).