Thermal Comfort Quality Monitoring and Controlling using Fuzzy Inference System Based on IoT Technology

Dwiana Hendrawati (1), Kurnianingsih (2), Brainvendra Widi Dionova (3), Muhammad Irsyad Abdullah (4), Dita Anies Munawwaroh (5)
(1) Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang, Indonesia
(2) Department of Electrical Engineering, Politeknik Negeri Semarang, Semarang, Indonesia
(3) Department of Electrical Engineering, Universitas Global Jakarta, Depok, Indonesia
(4) Faculty of Information Sciences & Engineering, Management and Sciences University, Shah Alam, Malaysia
(5) Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
[1]
D. Hendrawati, Kurnianingsih, Brainvendra Widi Dionova, Muhammad Irsyad Abdullah, and Dita Anies Munawwaroh, “Thermal Comfort Quality Monitoring and Controlling using Fuzzy Inference System Based on IoT Technology”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 96–102, Feb. 2025.
The environment indoor quality (EIQ) is linked to human health, comfort, performance, and well-being. Thermal comfort quality (TCQ) is one of the most critical issues in the quality of the EIQ. Thermal comfort pollutants (TCP), consisting of temperature and humidity, significantly impact the quality of human life because indoor pollutants are ten times worse than outdoor air pollutants. This research presents TCP monitoring and controlling using a fuzzy inference system (FIS) based on IoT technology to detect, control, identify, and classify the thermal comfort index (TCI) in four levels: most comfort, not comfort, and least comfort. This research used the IoT concept to monitor temperature and humidity toxicity levels. The results from the calibration tests for the temperature and humidity sensors show that the maximum error remains below 5% and that the sensors demonstrated high accuracy, with any deviations from the expected values being minimal and within the acceptable range. Prototype experiment results show that the system performs exceptionally well, with a maximum error between the prototype and the simulation of only 0.4%. The system can produce TCI ranges for most comfort (2.25-3), comfort (1.5-2.25), not comfort (0.75-1.5), and least comfort (0.75), with varying output responses for each cluster. Mechanical ventilation, alert, and notification output are presented to get efficient and accurate action to mitigate the TCP and notify the user about the TCP condition.

S. Kaveh, A. Habibi, M. Nikkar, and A. Aflaki, “Nature-based solutions optimizing green infrastructure strategies for microclimate regulation and air quality improvement in urban environments: A case study,” Nat.-Based Solut., vol. 6, p. 100167, Jun. 2024, doi:10.1016/j.nbsj.2024.100167.

A. Ackley et al., “Indoor environmental quality (IEQ) in healthcare facilities: A systematic literature review and gap analysis,” J. Build. Eng., vol. 86, Jan. 2024, doi: 10.1016/j.jobe.2024.108787.

M. I. S. Veríssimo, “A critical review of the analytical performance of the most recent MOS-based gas sensors for indoor air quality monitoring of WHO priority pollutants,” TrAC, Trends Anal. Chem., vol. 178, p. 117813, Apr. 2024, doi: 10.1016/j.trac.2024.117813.

P. Wargocki et al., “TAIL, a new scheme for rating indoor environmental quality in offices and hotels undergoing deep energy renovation (EU ALDREN project),” Energy Build., vol. 244, pp. 1–13, 2021, doi:10.1016/j.enbuild.2021.111029.

S. Nehr, L. Baus, H. Çınar, I. Elsen, and T. Frauenrath, “Indoor environmental quality assessment in passively ventilated classrooms in Germany and estimation of ventilation energy losses,” J. Build. Eng., vol. 97, p. 110937, Jul. 2024, doi: 10.1016/j.jobe.2024.110937.

T. Al Mindeel, E. Spentzou, and M. Eftekhari, “Energy, thermal comfort, and indoor air quality: Multi-objective optimization review,” Renew. Sustain. Energy Rev., vol. 202, p. 114682, Sep. 2024, doi: 10.1016/j.rser.2024.114682.

A. J. Werner-Juszczuk and A. Siuta-Olcha, “Assessment of the impact of setting the heating curve on reducing gas consumption in a residential building while ensuring thermal comfort,” J. Build. Eng., vol. 94, p. 110032, Jun. 2024, doi: 10.1016/j.jobe.2024.110032.

P. Wolkoff, K. Azuma, and P. Carrer, “Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation,” Int. J. Hyg. Environ. Health, vol. 233, p. 113709, Sep. 2021, doi:10.1016/j.ijheh.2021.113709.

M. Hou et al., “Resolving indoor shortwave and longwave human body irradiance variations for mean radiant temperature and local thermal comfort,” Energy Build., vol. 301, p. 113581, Sep. 2023, doi:10.1016/j.enbuild.2023.113581.

D. H. Phan, “Adverse effects of extreme temperature on human development: Empirical evidence from household data for Vietnam across regions,” Ecol. Econ., vol. 225, p. 108343, Jul. 2024, doi:10.1016/j.ecolecon.2024.108343.

R. Afroz et al., “Assessments and application of low-cost sensors to study indoor air quality in layer facilities,” Environ. Technol. Innov., vol. 36, p. 103773, Jun. 2024, doi: 10.1016/j.eti.2024.103773.

W. Cui, G. Cao, J. H. Park, Q. Ouyang, and Y. Zhu, “Influence of indoor air temperature on human thermal comfort, motivation and performance,” Build. Environ., vol. 68, pp. 114–122, 2013, doi:10.1016/j.buildenv.2013.06.012.

M. K. Mathew, R. G. J. Valooran, and N. K. Vaegae, “An effective temperature monitoring scheme using ANN-based fiber Bragg grating sensor,” Int. J. Intell. Eng. Syst., vol. 10, no. 4, pp. 109–116, 2017, doi:10.22266/ijies2017.0831.12.

M. N. A. Ramadan, M. A. H. Ali, S. Y. Khoo, M. Alkhedher, and M. Alherbawi, “Real-time IoT-powered AI system for monitoring and forecasting of air pollution in industrial environment,” Ecotoxicol. Environ. Saf., vol. 283, p. 116856, Apr. 2024, doi:10.1016/j.ecoenv.2024.116856.

A. Beniwal, P. Ganguly, A. K. Aliyana, G. Khandelwal, and R. Dahiya, “Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication,” Sens. Actuators B, Chem., vol. 374, p. 132731, Jul. 2023, doi:10.1016/j.snb.2022.132731.

H. Xi, B. Wang, and W. Hou, “Machine learning-based prediction of indoor thermal comfort in traditional Chinese dwellings: A case study of Hankou Lifen,” Case Stud. Therm. Eng., vol. 61, p. 105048, Apr. 2024, doi: 10.1016/j.csite.2024.105048.

J. Xin, X. Shi, F. Ye, C. Zhenlei, P. Yin, and B. Miao, “Evaluation of the air quality and the thermal comfort in the kitchen fume environment under the fresh air supplement,” Results Eng., vol. 23, p. 102681, Jan. 2024, doi: 10.1016/j.rineng.2024.102681.

R. Elise, V. Der Walt, S. Susanna, and M. Johannes, “Dataset of indoor air parameter measurements relating to indoor air quality and thermal comfort in South African primary school classrooms of various building infrastructure types,” Data Brief, vol. 53, p. 110045, 2024, doi: 10.1016/j.dib.2024.110045.

S. Miao, M. Gangolells, and B. Tejedor, “Data-driven model for predicting indoor air quality and thermal comfort levels in naturally ventilated educational buildings using easily accessible data for schools,” J. Build. Eng., vol. 80, p. 108001, Jul. 2023, doi:10.1016/j.jobe.2023.108001.

S. Ghani, A. Osama, F. Bakochristou, and E. A. Elbialy, “Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment,” J. Build. Eng., vol. 40, p. 102378, 2021, doi:10.1016/j.jobe.2021.102378.

M. Badasa and D. Obsi, “Assessment of urban thermal field variance index and thermal comfort level of Addis Ababa metropolitan city, Ethiopia,” Heliyon, vol. 8, no. 8, p. e10185, 2022, doi:10.1016/j.heliyon.2022.e10185.

B. W. Dionova, M. N. Mohammed, S. Al-Zubaidi, and E. Yusuf, “Environment indoor air quality assessment using fuzzy inference system,” ICT Express, 2020, doi: 10.1016/j.icte.2020.05.007.

H. Hamidane, S. E. L. Faiz, I. Rkik, M. El Khayat, A. Ed-dahhak, and A. Lachhab, “Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study,” Inf. Process. Agric., vol. 11, no. 3, pp. 409–420, 2024, doi:10.1016/j.inpa.2023.04.003.

Q. W. Khan, R. Ahmad, A. Rizwan, A. N. Khan, K. T. Lee, and D. H. Kim, “Optimizing energy efficiency and comfort in smart homes through predictive optimization: A case study with indoor environmental parameter consideration,” Energy Rep., vol. 11, pp. 5619–5637, Oct. 2024, doi: 10.1016/j.egyr.2024.05.038.

F. López Plazas and C. Sáenz de Tejada, “Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines,” Energy Build., vol. 314, Apr. 2024, doi: 10.1016/j.enbuild.2024.114248.

S. Oh et al., “Effects of air purifiers and ventilation on particulate matter concentration at semi-outdoor space,” J. Clean. Prod., vol. 434, p. 139903, Jul. 2024, doi: 10.1016/j.jclepro.2023.139903.

T. Kumar and A. Doss, “AIRO: Development of an intelligent IoT-based air quality monitoring solution for urban areas,” Procedia Comput. Sci., vol. 218, pp. 262–273, 2022, doi:10.1016/j.procs.2023.01.008.

C. Napole, O. Barambones, M. Derbeli, and I. Calvo, “Design and experimental validation of a piezoelectric actuator tracking control based on fuzzy logic and neural compensation,” Fuzzy Sets Syst., vol. 464, p. 108449, 2023, doi: 10.1016/j.fss.2022.12.005.

S. Loganathan, D. Ramakrishnan, M. Sathiyamoorthy, and H. M. Azamathulla, “Assessment of irrigational suitability of groundwater in Thanjavur district, Southern India using Mamdani fuzzy inference system,” Results Eng., vol. 21, p. 101789, Jan. 2024, doi:10.1016/j.rineng.2024.101789.

K. Pujaru, S. Adak, T. K. Kar, S. Patra, and S. Jana, “A Mamdani fuzzy inference system with trapezoidal membership functions for investigating fishery production,” Decis. Anal. J., vol. 11, p. 100481, Jun. 2024, doi: 10.1016/j.dajour.2024.100481.

F. Irwanto et al., “IoT and fuzzy logic integration for improved substrate environment management in mushroom cultivation,” Smart Agric. Technol., vol. 7, p. 100427, Mar. 2024, doi:10.1016/j.atech.2024.100427.

Y. Ayat, A. El Moussati, and I. Mir, “Revolutionizing air quality monitoring: IoT-enabled e-noses and low-power devices,” IFAC-PapersOnLine, vol. 58, no. 13, pp. 829–834, 2024, doi:10.1016/j.ifacol.2024.07.585.

E. Collado et al., “Open-source Internet of Things (IoT)-based air pollution monitoring system with protective case for tropical environments,” HardwareX, vol. 19, Jan. 2024, doi:10.1016/j.ohx.2024.e00560.

M. M. Islam, F. A. Jibon, M. M. Tarek, M. H. Kanchan, and S. U. P. Shakil, “A real-time dataset of air quality index monitoring using IoT and machine learning in the perspective of Bangladesh,” Data Brief, vol. 55, p. 110578, 2024, doi: 10.1016/j.dib.2024.110578.

H. Sarkheil, S. Rahbari, and Y. Azimi, “Fuzzy-Mamdani environmental quality assessment of gas refinery chemical wastewater in the Pars special economic and energy zone,” Environ. Challenges, vol. 3, p. 100065, Jan. 2021, doi: 10.1016/j.envc.2021.100065.

S. Yordanova, B. Gueorguiev, and M. Slavov, “Design and industrial implementation of fuzzy logic control of level in soda production,” Eng. Sci. Technol., Int. J., vol. 23, no. 3, pp. 691–699, 2020, doi: 10.1016/j.jestch.2019.08.005.

A. Aggarwal, T. Choudhary, and P. Kumar, “A fuzzy interface system for determining Air Quality Index,” in Proc. 2017 Int. Conf. Infocom Technol. Unmanned Syst. Trends Futur. Dir. (ICTUS), 2018, pp. 786–790, doi: 10.1109/ICTUS.2017.8286113.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).