Characterization of Delignified Oil Palm Decanter Cake (OPDC) for Polymer Composite Development

Muhammad Aqif Adam (1), Alawi Sulaiman (2), Azhari Samsu Baharuddin (3), Mohd Noriznan Mokhtar (4), Karuppuchamy Subbian (5), Meisam Tabatabaei (6)
(1) Universiti Teknologi MARA
(2) Faculty of Plantation and Agrotechnology,Universiti Teknologi MARA, Malaysia
(3) Universiti Putra Malaysia
(4) Universiti Putra Malaysia
(5) Alagappa University
(6) Agricultural Biotechnology Research Institute of Iran
Fulltext View | Download
How to cite (IJASEIT) :
Adam, Muhammad Aqif, et al. “Characterization of Delignified Oil Palm Decanter Cake (OPDC) for Polymer Composite Development”. International Journal on Advanced Science, Engineering and Information Technology, vol. 9, no. 2, Mar. 2019, pp. 384-9, doi:10.18517/ijaseit.9.2.2392.
For decades agricultural waste materials have been a subject of study for the production of sustainable bioproducts such as biodegradable composite. In Malaysia millions of tonnes of palm oil biomass are produced annually including Oil Palm Decanter Cake (OPDC). In this study, the objective was to characterize the delignified OPDC for potential biodegradable composite development. Chemical delignification is a process of removing the lignin from the plant biomass by using chemicals. Delignification process was performed by treating the raw OPDC with 10% NaOH (alkaline treatment) followed by 25% H 2 SO 4 (acid treatment) and finally 10% H 2 O 2 (bleaching). The result of the treated OPDC showed that cellulose content had increased from 29.4 to 87.6%, while hemicellulose had decreased from 11.2 to 3.1% and finally lignin had decreased from 25.3 to 9.3%. TGA, FTIR and XRD analysis of the raw and treated OPDC samples supported the findings as well. Through morphological analysis of the treated OPDC using FESEM, it showed that the chemical treatment had caused the raw OPDC fibre surface to break-up and open its structure. At the end of this study, the treated OPDC was also exposed to lauric acid for hydrophilic properties study and the result showed that the hydrophobic properties had been developed in the treated OPDC and thus made it suitable for biodegradable composite development.

Tuates, A.M., and Caparino, O.A. (2016). Development of Biodegradable Plastics as Mango fruit Bag. International Journal on Advanced Science Engineering and Information Technology, 6(5), 799-803.

Nur Hanani, Z.A. and Abdullah, S. (2016). Development of Green Banana (Musa paradisiaca) as Potential Food Packaging Films and Coatings. International Journal on Advanced Science Engineering and Information Technology, 6(1), 88-90.

Hassan, F., Zulkefli, R., Ghazali, M.J., and Azhari, C.H. (2017). Kenaf Fiber Composite in Automotive Industry: An Overview. International Journal on Advanced Science and Engineering Information Technology, 7(1), 315-321.

Kabir, M.M., Wang, H., and Cardona, F. (2012). Chemical Treatments on Plant-Based Nature Fibre Reinforced Composite: An Overview. Composite, 43, 2883-2892.

Adam, M.A.., Sulaiman A., Said, C.M.S., Som, A.M., Baharuddin A.S., and Mokhtar M.M. (2014). Preliminary Study of Oil Palm Decanter Cake Natural Polymer Composite (OPDC-NPC). Advanced Materials Research, 911, 40-44.

Adam, M.A., Sulaiman, A., Said, C.M.S., Som, A.M., and Tabatabaei, M. (2015). Enhanced Rigidity of natural Polymer Composite Development from Oil Palm Decanter Cake. BioResources, 10, 932-942.

Dodiuk, H., rios, P.F., Dotan, A., and Kenig, S. (2007). Hydrophobic and self-Cleaning Coatings. Polymer for Advanced Technologies, 18, 746-750.

Nguong, C.W., Lee, S.N.B., and Sujan, D. (2013). A Review on Natural Fiber Reinforced Polymer Composites. Engineering and Technology, 73, 1123-1130.

Ashori, A. (2008). Wood Plastic Composite as Promising Green Composites for Automotive Industries. Bioresource Technology, 99, 4661-4667.

Saheb, D.N., and Jog, J.P. (1999). Natural Fiber Polymer Composites: A Review. Advances in Polymer Technology, 18, 351-363.

Reddy, N., and Yang, Y. (2005). Biofibers from Agricultural Byproducts for Industrial Application. Trends in Biotechnology, 23 (1), 21-27.

Garcia-Nunez, J.A., Ramirez-Contreras, N.E., Rodriguez, D.T., Silva-Lora, E., Stockle, C., and Garcia-Perez, M. (2016). Evolution of Palm Oil Mills into Bio-Refineries: Literature Review on Current and Potential Uses of Residual Biomass and Effluents. Resources, Conservation and Recycling, 110, 99-114.

Faruk, O., Bledzki, A.K., Fink, H.P., and Sain, M. (2012). Biocomposite Reinforced with Natural Fiber: 2000-2010. Progress in Polymer Science, 37, 1552-1596.

Barros, A., Lopez, C., Rico, V., Garcia, F., Gonzalez-Elipe, A.R., Richter, E., Battiston, G., Gerbasi, R., McSporran, N, Sauthier, G., Gyorgy, E., and Figueras, A. (2007). Effect of Visible and UV Illumination on the Water Contact Angle of TiO2 Thin Films with Incorporated Nitrogen. Journal of Physical Chemistry C, 111, 1801-1808.

Sidik, S.M., Jalil, A.A., Triwahyono, S., Adam, S.H., Satar, M.A.H., and Hameed, B.H. (2012). Modified Oil palm Leaves Adsorbent with Enhanced Hydrophobicity for Crude Oil Removal. Chemical Engineering Journal, 208, 9-18.

Rzak, M.N.A., Ibrahim, M.F., Yee, P.L., Hassan, M.A., and Aziz, S.A. (2012). Utilization of Oil Palm Decanter Cake for Cellulase and Polyoses Production. Biotechnology and Bioprocess Engineering, 17, 547-555.

Rosli, N.A., Ahmad, I., and Abdullah, I. (2013). Isolation and Characterisation of Cellulose Nanocrystals from Agave agustifolia Fiber. BioResources, 8, 1893-1908.

Nazir, M.S., Wahjoedi, B.A., Yusoff, A.W., and Abdullah, M.A. (2013). Eco-Friendly Extraction and Characterisation of Cellulose from Oil Palm Empty Fruit Bunches. BioResources, 8, 2161-2171.

Jacobsen, S.E., and Wyman, C.E. (2000). Cellulose and Hemicellulose Hydrolysis Models for Application to Current and Novel Pretreatment Process. Applied Biochemistry and Bioitechnology, 84, 81-96.

Chan, C.H., Chia, C.H., Zakaria, S., Ahmad, I., and Dufresne, A. (2013). Production and Charaterisation of Cellulose and Nano-Crystalline from Kenaf Core wood. BioResources, 8, 785-794.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).