Effects of Metal Fillers on Properties of Epoxy for Rapid Tooling Inserts

Mohd Tanwyn Mohd Khushairi (1), Safian Sharif (2), Khairur Rijal Jamaludin (3), Amrifan Saladin Mohruni (4)
(1) German-Malaysian Institute
(2) Universiti Teknologi Malaysia
(3) Universiti Teknologi Malaysia
(4) Sriwijaya University
Fulltext View | Download
How to cite (IJASEIT) :
Mohd Khushairi, Mohd Tanwyn, et al. “Effects of Metal Fillers on Properties of Epoxy for Rapid Tooling Inserts”. International Journal on Advanced Science, Engineering and Information Technology, vol. 7, no. 4, Aug. 2017, pp. 1155-61, doi:10.18517/ijaseit.7.4.2480.
Metal filled epoxy has been recognised as an alternative material used in rapid tooling application such as core and cavity for injection moulding. The addition of fillers into the metal filled epoxy has proven to increase the epoxy’s mechanical performance such as wear, strength, improved machinability and thermal properties. Physical and thermal properties such as density, thermal diffusivity, thermal conductivity and compressive strength were analysed to evaluate the effects of inclusion of metal fillers such as copper and brass particles into the blended epoxy matrix. Brass and copper powders were added separately ranging from 10%, 20% and 30% of its weight into the aluminium filled epoxy mix ratio. Increased density, thermal diffusivity and thermal conductivity values were evident with a linear trend when both filler compositions were increased from 10% to 30%. Brass and copper density values of 2.22 g/cm3 and 2.08 g/cm3 respectively were recorded at the highest filler composition. Copper fillers with 30% composition in epoxy matrix exhibited the highest average value of thermal diffusivity of 1.12 mm2/s and thermal conductivity of 1.87 W/mK, while inclusion of brass showed no significant improvement on the properties. Compressive strength increased from 76.8 MPa to 93.2 MPa with 20% of brass fillers and 80.8 MPa with 10% of copper fillers composition. The addition of more metal fillers resulted in a decrease in compressive strength due to the presence of porosity. This study validated previous researchers that fillers enhance mechanical, thermal properties and density of aluminium filled epoxy.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).