Selection of Soybean Varieties for Coastal Zones in Bengkulu

Yudhy Harini Bertham (1), Abimanyu Dipo Nusantara (2), Hesti Pujiwati (3)
(1) Department of Soil Science, University of Bengkulu, Bengkulu, 38371, Indonesia
(2) Department of Soil Science, University of Bengkulu, Bengkulu, 38371, Indonesia
(3) Department of Agrotechnology, University of Bengkulu, Bengkulu, 38371, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Bertham, Yudhy Harini, et al. “Selection of Soybean Varieties for Coastal Zones in Bengkulu”. International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 5, Oct. 2020, pp. 2152-7, doi:10.18517/ijaseit.10.5.4975.
The coastal land has multiple stresses, i.e., lack of soil moisture, plant nutrients and organic matter, high temperature, and salinity, and strong wind. Cultivation of crops in these circumstances requires selected input in the forms of organic fertilizers and biofertilizers, which are environmentally friendly and easy to be developed by the farmers. The aim of this study is to select soybean varieties and their compatibility with bio-fertilizer according to the characteristics of coastal land. The experiment was arranged in a Randomized Complete Block Design and repeated five times. The tested factors were soybean varieties (i.e., Anjasmoro, Detam1, Detam2, Grobogan, Malika, and Wilis). Basal fertilization provided was 10-ton ha-1 of organic fertilizer, 200 kg ha-1 of agricultural lime, 50 kg Urea ha-1, and 50 kg ha-1 SP36, and 50 kg KCl ha-1. The results show that Anjasmoro and Wilis varieties have the best growth; their seeds weights were 16.85 and 14.58 g per 100 grains, respectively, and their dry seeds production were 2.67 and 2.58 tons ha-1, respectively. Both varieties also have plant tissue concentration of N (3.85%), P (0.32 to 0.37%), and K (2.44 to 2.50%), which indicate the equality of the needed fertilizers. The results also reveal that both soybean varieties (Anjasmoro and Wilis) are the best candidates for developing soybean cultivation in coastal areas of Bengkulu or anywhere with the same conditions.

J. Y. Ewusie, “Ekologi Tropika,” Bandung, Penerbit ITB, 1990.

Y. H. Bertham, M. Handajaningsih, and D. W. Ganefianti, “Ujicoba budidaya cabai organik di lahan pesisir Bengkulu,” 2013.

Y. H. Bertham, A. D. Nusantara, and S. Sukisno, “Sosialisasi Dan Pendampingan Paket Teknologi Hayati Untuk Budidaya Cabe Di Kawasan Pesisir Bengkulu,” Dharma Raflesia: Jurnal Ilmiah Pengembangan dan Penerapan IPTEKS, vol. 14, no. 2, 2016.

R. Matuszak-Slamani et al., “Influence of humic acid molecular fractions on growth and development of soybean seedlings under salt stress,” Plant Growth Regulation, vol. 83, no. 3, pp. 465-477, 2017.

H. Etesami and G. A. Beattie, “Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions,” in Probiotics and Plant Health, Springer, 2017, pp. 163-200.

A. M. Chibeba, S. Kyei-Boahen, M. de Fí¡tima Guimarí£es, M. A. Nogueira, and M. Hungria, “Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique,” Agriculture, ecosystems & environment, vol. 246, pp. 291-305, 2017.

D. Egamberdieva, S. Wirth, D. Jabborova, L. A. Rí¤sí¤nen, and H. Liao, “Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture,” Journal of Plant Interactions, vol. 12, no. 1, pp. 100-107, 2017.

D. Egamberdieva, D. Jabborova, and G. Berg, “Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress,” Plant and soil, vol. 405, no. 1-2, pp. 35-45, 2016.

D. A. Fitriana, T. Islami, and Y. Sugito, “Pengaruh dosis Rhizobium serta macam pupuk kandang terhadap pertumbuhan dan hasil tanaman kacang tanah (Arachis hypogaea L.) varietas kancil,” Jurnal Produksi Tanaman, vol. 3, no. 7, 2015.

A. S. Adeyeye, A. O. Togun, A. B. Olaniyan, and W. B. Akanbi, “Effect of fertilizer and rhizobium inoculation on growth and yield of soyabean variety (Glycine max L. Merrill),” Advances in Crop Science and Technology, vol. 5, no. 01, pp. 1-9, 2017.

A. Schí¼Î²ler, D. Schwarzott, and C. Walker, “A new fungal phylum, the Glomeromycota: phylogeny and evolution,” Mycological research, vol. 105, no. 12, pp. 1413-1421, 2001.

A. A. H. A. Latef and M. Miransari, “The role of arbuscular mycorrhizal fungi in alleviation of salt stress,” in Use of microbes for the alleviation of soil stresses, Springer, 2014, pp. 23-38.

Y. H. Bertham, “Potensi pupuk hayati dalam peningkatan produktivitas kacang tanah dan kedelai pada tanah seri Kandanglimun Bengkulu,” JIPI, vol. 4, no. 1, pp. 18-26, 2002.

Y. H. Bertham, “Pemanfaatan CMA dan Bradyrhizobium dalam meningkatkan produktivitas kedelai pada sistem agroforestri kayu bawang (Scorodocarpus borneensis Burm. F) di ultisol [disertasi],” Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor, 2006.

K. Anand, B. Kumari, and M. A. Mallick, “Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers,” J Pharm Pharm Sci, vol. 8, pp. 37-40, 2016.

W. R. S. Nasution, “Ketersediaan Hara-P Dan Respon Tanaman Jagung (Zea Mays L) Pada Tanah Ultisol Tambunan-A Akibat Pemberian Guano Dan Mikroorganisme Pelarut Fosfat (MPF),” 2006.

M. Sembiring, “Peningkatan pertumbuhan dan serapan hara p tanaman cabai (Capsicum annum l.) dengan menggunakan bakteri dan jamur pelarut fosfat pada tanah andisol,” Laporan Penelitian. Universita Sumatera Utara, Medan, 2012.

S. Eviati and M. Sulaeman, “Analisis Kimia Tanah, Tanaman, Air, dan Pupuk,” Balai Penelitian Tanah. Bogor, vol. 246, 2009.

S. Somaatmadja, “Peningkatan Produksi Varietas Melalui Perakitan Kedelai,” Dalam: Somaatmadja S, Ismunadji M, Sumarno, Syam M, Manurung SO, Yuswadi (eds.). Kedelai. Badan Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor, 1985.

Balitkabi, “Deskripsi Varietas Unggul Kacang-Kacangan dan Umbi-Umbian,” 2016.

H. Greenway and R. Munns, “Mechanisms of salt tolerance in nonhalophytes,” Annual review of plant physiology, vol. 31, no. 1, pp. 149-190, 1980.

N. Aini, W. D. Y. Sumiya, D. R. P. Syekhfani, and A. Setiawan, “Kajian pertumbuhan, kandungan klorofil dan hasil beberapa genotipe tanaman kedelai (Glycine max L,) pada kondisi salinitas,” in Prosiding Seminar Nasional Lahan Sub Optimal; Palembang (Palembang, 26-27 September 2014), 2014, pp. 591-597.

R. Mahboobeh and E. A. Akbar, “Effect of salinity on growth, chlorophyll, carbohydrate and protein contents of transgenic Nicotiana Plumbaginifolia over expressing P5CS gene,” Journal of Environmental Research and Management, vol. 4, pp. 163-170, 2013.

F. A. Ranjbar and B. R. Dehghani, “Impact of salinity stress on photochemical efficiency of photosystem ii, chlorophyll content and nutrient elements of nitere bush (Nitraria schoberi L.) Plants,” 2016.

M. Jamil, S. Rehman, and E. S. Rha, “Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.),” Pak. J. Bot, vol. 39, no. 3, pp. 753-760, 2007.

R. Valencia, P. Chen, T. Ishibashi, and M. Conatser, “A rapid and effective method for screening salt tolerance in soybean,” Crop science, vol. 48, no. 5, pp. 1773-1779, 2008.

A. Dolatabadian, S. A. M. M. Sanavy, and F. Ghanati, “Effect of salinity on growth, xylem structure and anatomical characteristics of soybean,” Notulae Scientia Biologicae, vol. 3, no. 1, pp. 41-45, 2011.

Q.-S. Wu, M.-Q. Cao, Y.-N. Zou, and X. He, “Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange,” Scientific reports, vol. 4, p. 5823, 2014.

A. C. Kimura and M. R. Scotti, “Soil aggregation and arbuscular mycorrhizal fungi as indicators of slope rehabilitation in the Sí£o Francisco River basin (Brazil),” Soil and Water Research, vol. 11, no. 2, pp. 114-123, 2016.

M. Habte and A. Manjunath, “Categories of vesicular-arbuscular mycorrhizal dependency of host species,” Mycorrhiza, vol. 1, no. 1, pp. 3-12, 1991.

E. Habib Misbahulzanah, S. Waluyo, and D. J. Widada, “A study on physiological characteristic of soybean (glycine max (l.) merr.) cultivar and its mycorrhizal dependency,” 2014.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).