Opinion Mining Summarization and Automation Process: A Survey
How to cite (IJASEIT) :
Aggarwal, C. C. (2015). Data mining: the textbook. Springer.
Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
KHAN, S. N., Nawi, N. M., Shahzad, A., Ullah, A., Mushtaq, M. F., Mir, J., & Aamir, M. (2017). Comparative Analysis of Heart Disease Prediction. JOIV: International Journal of Informatics Visualization, 1(4-2), 227-231.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1-2), 1-135.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1-2), 1-135.
Hu, M., & Liu, B. (2004, July). Mining opinion features in customer reviews. In AAAI (Vol. 4, No. 4, pp. 755-760).
Mali, K., & Mitra, S. (2003). Clustering and its validation in a symbolic framework. Pattern Recognition Letters, 24(14), 2367-2376.
Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data. Springer Science & Business Media.
Grimes, S. (2008). Sentiment Analysis: Opportunities and Challenges. Beye Network.
Deng, Z. H., Luo, K. H., & Yu, H. L. (2014). A study of supervised term weighting scheme for sentiment analysis. Expert Systems with Applications, 41(7), 3506-3513.
Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications, 40(16), 6266-6282.
Saleh, M. R., Martín-Valdivia, M. T., Montejo-Rí¡ez, A., & Ureña-López, L. A. (2011). Experiments with SVM to classify opinions in different domains. Expert Systems with Applications, 38(12), 14799-14804.
Penalver-Martinez, I., Garcia-Sanchez, F., Valencia-Garcia, R., Rodriguez-Garcia, M. A., Moreno, V., Fraga, A., & Sanchez-Cervantes, J. L. (2014). Feature-based opinion mining through ontologies. Expert Systems with Applications, 41(13), 5995-6008.
Chen, L., Qi, L., & Wang, F. (2012). Comparison of feature-level learning methods for mining online consumer reviews. Expert Systems with Applications, 39(10), 9588-9601.
Cruz, F. L., Troyano, J. A., Enríquez, F., Ortega, F. J., & Vallejo, C. G. (2013). ‘Long autonomy or long delay?’The importance of domain in opinion mining. Expert Systems with Applications, 40(8), 3174-3184.
Eirinaki, M., Pisal, S., & Singh, J. (2012). Feature-based opinion mining and ranking. Journal of Computer and System Sciences, 78(4), 1175-1184.
Kontopoulos, E., Berberidis, C., Dergiades, T., & Bassiliades, N. (2013). Ontology-based sentiment analysis of twitter posts. Expert systems with applications, 40(10), 4065-4074.
MartíN-Valdivia, M. T., MartíNez-Cí¡Mara, E., Perea-Ortega, J. M., & UreñA-LóPez, L. A. (2013). Sentiment polarity detection in Spanish reviews combining supervised and unsupervised approaches. Expert Systems with Applications, 40(10), 3934-3942.
Min, H. J., & Park, J. C. (2012). Identifying helpful reviews based on customer’s mentions about experiences. Expert Systems with Applications, 39(15), 11830-11838.
Zhai, Z., Xu, H., Kang, B., & Jia, P. (2011). Exploiting effective features for Chinese sentiment classification. Expert Systems with Applications, 38(8), 9139-9146.
Zajic, D. M., Dorr, B. J., & Lin, J. (2008). Single-document and multi-document summarization techniques for email threads using sentence compression. Information Processing & Management, 44(4), 1600-1610.
Fattah, M. A., & Ren, F. (2009). GA, MR, FFNN, PNN and GMM based models for automatic text summarization. Computer Speech & Language, 23(1), 126-144.
Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335-336). ACM.
Sarkar, K. (2010). Syntactic trimming of extracted sentences for improving extractive multi-document summarization. J. Comput, 2, 177-184.
Tao, Y., Zhou, S., Lam, W., & Guan, J. (2008, December). Towards more effective text summarization based on textual association networks. In Semantics, Knowledge, and Grid, 2008. SKG'08. Fourth International Conference on (pp. 235-240). IEEE.
Wan, X. (2008). Using only cross-document relationships for both generic and topic-focused multi-document summarizations. Information Retrieval, 11(1), 25-49.
Wang, D., Zhu, S., Li, T., Chi, Y., & Gong, Y. (2011). Integrating document clustering and multi-document summarization. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(3), 14.
Wang, C., Long, L., & Li, L. (2008a, October). HowNet based evaluation for Chinese text summarization. In Natural Language Processing and Knowledge Engineering, 2008. NLP-KE'08. International Conference on (pp. 1-6). IEEE.
Wang, D., Li, T., Zhu, S., & Ding, C. (2008b, July). Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 307-314). ACM.
Wang, D., Zhu, S., Li, T., & Gong, Y. (2009, August). Multi-document summarization using sentence-based topic models. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers (pp. 297-300). Association for Computational Linguistics.
Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.
Hu, M., & Liu, B. (2006, July). Opinion extraction and summarization on the web. In AAAI (Vol. 7, pp. 1621-1624).
Carenini, G., Cheung, J. C. K., & Pauls, A. (2013). MULTI”DOCUMENT SUMMARIZATION OF EVALUATIVE TEXT. Computational Intelligence, 29(4), 545-576.
Radev, D. R., Teufel, S., Saggion, H., Lam, W., Blitzer, J., Qi, H. ... & Drabek, E. (2003, July). Evaluation challenges in large-scale document summarization. In Proceedings of the 41st Annual Meeting of Association for Computational Linguistics-Volume 1 (pp. 375-382). Association for Computational Linguistics.
Carenini, G., & Moore, J. D. (2006). Generating and evaluating evaluative arguments. Artificial Intelligence, 170(11), 925-952.
Lerman, K., Blair-Goldensohn, S., & McDonald, R. (2009, March). Sentiment summarization: evaluating and learning user preferences. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (pp. 514-522). Association for Computational Linguistics.
Gerani, S., Mehdad, Y., Carenini, G., Ng, R. T., & Nejat, B. (2014). Abstractive Summarization of Product Reviews Using Discourse Structure. In EMNLP (Vol. 14, pp. 1602-1613).
Nishikawa, H., Hasegawa, T., Matsuo, Y., & Kikui, G. (2010, August). Opinion summarization with integer linear programming formulation for sentence extraction and ordering. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters (pp. 910-918). Association for Computational Linguistics.
Ko, Y., & Seo, J. (2008). An effective sentence-extraction technique using contextual information and statistical approaches for text summarization. Pattern Recognition Letters, 29(9), 1366-1371.
Harabagiu, S., & Lacatusu, F. (2005, August). Topic themes for multi-document summarization. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 202-209). ACM.
Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8(3), 243-281.
Fattah, M. A. (2014). A hybrid machine learning model for multi-document summarization. Applied Intelligence, 40(4), 592-600.
Ouyang, Y., Li, W., Zhang, R., Li, S., & Lu, Q. (2013). A progressive sentence selection strategy for document summarization. Information Processing & Management, 49(1), 213-221.
Ferreira, R., de Souza Cabral, L., Lins, R. D., e Silva, G. P., Freitas, F., Cavalcanti, G. D., ... & Favaro, L. (2013). Assessing sentence scoring techniques for extractive text summarization. Expert systems with applications, 40(14), 5755-5764.
Baralis, E., Cagliero, L., Mahoto, N., & Fiori, A. (2013). GRAPHSUM: Discovering correlations among multiple terms for graph-based summarization. Information Sciences, 249, 96-109.
Lloret, E., & Palomar, M. (2013). Tackling redundancy in text summarization through different levels of language analysis. Computer Standards & Interfaces, 35(5), 507-518.
Alguliev, R. M., Aliguliyev, R. M., & Isazade, N. R. (2013). Multiple documents summarization based on evolutionary optimization algorithm. Expert Systems with Applications, 40(5), 1675-1689.
Yang, L., Cai, X., Zhang, Y., & Shi, P. (2014). Enhancing sentence-level clustering with ranking-based clustering framework for theme-based summarization. Information sciences, 260, 37-50.
Ferreira, R., de Souza Cabral, L., Freitas, F., Lins, R. D., de Franí§a Silva, G., Simske, S. J., & Favaro, L. (2014). A multi-document summarization system based on statistics and linguistic treatment. Expert Systems with Applications, 41(13), 5780-5787.
Glavaš, G., & Šnajder, J. (2014). Event graphs for information retrieval and multi-document summarization. Expert systems with applications, 41(15), 6904-6916.
Mendoza, M., Bonilla, S., Noguera, C., Cobos, C., & León, E. (2014). Extractive single-document summarization based on genetic operators and guided local search. Expert Systems with Applications, 41(9), 4158-4169.
Tzouridis, E., Nasir, J., & Brefeld, U. (2014). Learning to summarise related sentences. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers (pp. 1636-1647).
Kaljahi, R., Foster, J., & Roturier, J. (2014, August). Semantic Role Labelling with minimal resources: Experiments with French. In * SEM@ COLING (pp. 87-92).
Kikuchi, Y., Hirao, T., Takamura, H., Okumura, M., & Nagata, M. (2014). Single Document Summarization based on Nested Tree Structure. In ACL (2) (pp. 315-320).
Fang, H., Lu, W., Wu, F., Zhang, Y., Shang, X., Shao, J., & Zhuang, Y. (2015). Topic aspect-oriented summarization via group selection. Neurocomputing, 149, 1613-1619.
Heu, J. U., Qasim, I., & Lee, D. H. (2015). FoDoSu: multi-document summarization exploiting semantic analysis based on social Folksonomy. Information Processing & Management, 51(1), 212-225.
Liu, H., Yu, H., & Deng, Z. H. (2015, January). Multi-Document Summarization Based on Two-Level Sparse Representation Model. In AAAI (pp. 196-202).
Li, C., Liu, Y., & Zhao, L. (2015a). Using External Resources and Joint Learning for Bigram Weighting in ILP-Based Multi-Document Summarization. In HLT-NAACL (pp. 778-787).
Li, P., Bing, L., Lam, W., Li, H., & Liao, Y. (2015b, April). Reader-Aware Multi-Document Summarization via Sparse Coding. In IJCAI (pp. 1270-1276).
Parveen, D., & Strube, M. (2015, July). Integrating Importance, Non-Redundancy, and Coherence in Graph-Based Extractive Summarization. In IJCAI (pp. 1298-1304).
Yao, J. G., Wan, X., & Xiao, J. (2015, June). Compressive Document Summarization via Sparse Optimization. In IJCAI(pp. 1376-1382).
Bairi, R., Iyer, R. K., Ramakrishnan, G., & Bilmes, J. A. (2015). Summarization of Multi-Document Topic Hierarchies using Submodular Mixtures. In ACL (1) (pp. 553-563).
Kedzie, C., McKeown, K., & Diaz, F. (2015). Predicting Salient Updates for Disaster Summarization. In ACL (1) (pp. 1608-1617).
Hong, K., Marcus, M., & Nenkova, A. (2015). System Combination for Multi-document Summarization. In EMNLP(pp. 107-117).
Yao, J. G., Wan, X., & Xiao, J. (2015). Phrase-based Compressive Cross-Language Summarization. In EMNLP (pp. 118-127).
Gupta, V. (2013). The hybrid algorithm for multilingual summarization of Hindi and Punjabi documents. In Mining Intelligence and Knowledge Exploration (pp. 717-727). Springer, Cham.
Khan, A., Salim, N., & Kumar, Y. J. (2015). A framework for multi-document abstractive summarization based on semantic role labeling. Applied Soft Computing, 30, 737-747.
Banerjee, S., Mitra, P., & Sugiyama, K. (2015, July). Multi-Document Abstractive Summarization Using ILP Based Multi-Sentence Compression. In IJCAI (pp. 1208-1214).
Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., & Passonneau, R. J. (2015). Abstractive multi-document summarization via phrase selection and merging. arXiv preprint arXiv:1506.01597.
Rush, A. M., Chopra, S., & Weston, J. (2015). A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685.
Oufaida, H., Blache, P., & Nouali, O. (2015, June). Using Distributed Word Representations and mRMR Discriminant Analysis for Multilingual Text Summarization. In International Conference on Applications of Natural Language to Information Systems (pp. 51-63). Springer, Cham
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).