Selection of Mozzarella Cheese Whey Native Yeasts with Ethanol and Glucose Tolerance Ability

Roostita L. Balia (1), Tb. Benito A. Kurnani (2), Gemilang Lara Utama (3)
(1) Faculty of Animal Husbandry, Universitas Padjadjaran, Jl.Raya Bandung Sumedang KM.21, West Java, Indonesia
(2) Faculty of Animal Husbandry, Universitas Padjadjaran, Jl.Raya Bandung Sumedang KM.21, West Java, Indonesia
(3) Departement of Food Technology Faculty of Agro-Industrial Technology Universitas Padjadjaran Jl. Raya Bandung Sumedang KM. 21 Jatinangor 45363 West Java - Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Balia, Roostita L., et al. “Selection of Mozzarella Cheese Whey Native Yeasts With Ethanol and Glucose Tolerance Ability”. International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 4, Aug. 2018, pp. 1091-7, doi:10.18517/ijaseit.8.4.5869.
The research aimed to determine the native yeast on mozzarella cheese whey that has glucose and ethanol tolerance ability. The research did experimentally and the data analyzed descriptively. Native yeasts isolated from 1 ml mozzarella cheese whey with using a modification of Potato Dextrose Agar/PDA (Oxoid Ltd.) with the addition of 3% Yeasts Extract/YE (Kraft Foods) and 10 ppm amoxicillin. The yeasts identified for macroscopic and microscopic characteristics then tested with RapID Yeast Plus System. The ability in tolerate ethanol and glucose contents tested by grown the yeasts on modified Nutrient Broth/NB (Oxoid Ltd.) with 3% Yeasts Extract/YE (Kraft Foods) and 10 ppm amoxicillin then added with glucose monohydrates (10%, 20%, 30%) or ethanol (10%, 20%, 30%) and incubated for 72h at room temperature (23-28°C). Optical density (OD) read for UV absorbance at 600 nm using UV-Vis spectrophotometer every 24h until 72h. Results showed that six native yeasts isolated and identified as C. tropicalis three isolate, Tri. beigelii two isolates and Blast. capitatus is one isolate. The best isolates with highest OD at 30% glucose concentration (2.215) gained by C.tropicalis (a), while the highest OD at 30% ethanol concentration (0.508) shown by C.tropicalis (f). 

Bullock, D. K., Hansen, C. L., & Poe S. E. “Carbon monoxide production from land applied cheese whey”. Bioresource Technology, vol. 54(3), pp. 231-233. 1995.

Saddoud, A., Hassari, I. & Sayadi, S. “Anaerobic membrane reactor with phase separation for the treatment of cheese whey”. Bioresour. Technol., vol. 98(11), pp. 2102-2108, 2007.

Chatzipaschali, A. A. & Stamatis, A. G. “Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects”. Energies, vol. 5, pp. 3492-3525, 2012.

Ghaly, A.E., Ramkumar, D.R., Sadaka, S.S., Rochon, J.D. “Effect of reseeding and pH control on the performance of a two-stage mesophilic anaerobic digester operating on acid cheese whey”. Can. Agric. Eng., vol. 42, pp. 173-183, 2000.

Ghaly, A.E. & E.A. Echiegu. “Kinetic of a continuous flow no-mix anaerobic reactor”. Energy Sources, vol. 15(3), pp. 1-17, 1993.

Maullu, C., Lampis, G., Basile, T., Ingianni, A., Rossolini, G.M., Pompei, R. “Production of lysozyme enriched biomass from cheese industry by-products”. Journal of Applied Microbiology, vol. 86, pp.182-186, 1999.

Utama, G. L., Kurnani, T. B. A., Sunardi, & Balia, R. L. “Reducing cheese-making by-product disposal through ethanol fermentation and the utilization of distillery waste for fertilizer”. Int. J. of GEOMATE. vol. 13(37), pp. 103-107, 2017.

Utama, G. L., Kurnani, T. B. A., Sunardi, & Balia, R. L. “The isolation and identification of stress tolerance ethanol-fermenting yeasts from mozzarella cheese whey”. Int. J. on Adv. Sci. Eng. Info Tech. vol. 6(2), pp. 252-257, 2016.

Utama, G. L., Putri, F., Indah, H., & Balia, R. L. “Preliminary identification of inhibition activities towards E.coli and Salmonella spp. By pickles indigenous halotolerant bacteria”. Int. J. on Adv. Sci. Eng. Info Tech. vol. 5(2), pp. 123-125, 2015.

Indah, H., Putri, F. & Utama, G. L. “Preliminary studies of halophilic yeasts antimicrobial activities isolated from cocoa bean pulp towards E.coli and Salmonella spp.”. Int. J. on Adv. Sci. Eng. Info Tech. vol. 5(2), pp. 107-109, 2015.

Roostita, R. & Fleet, G. H. “Growth of yeasts in milk and associated changes to milk composition”. Inter. J. Food Microbiol. vol. 31, pp. 205-219, 1996.

Fakruddin, M., Islam, M. A., Ahmed, M. M. & Chowdhury, N. “Process optimization of bioethanol production by stress tolerance yeasts isolated from agro-industrial wastes”. International Journal of Renewable and Sustainable Energy, pp. 1343-1346, 2013.

Fardiaz, S. Mikrobiologi Pangan 1. Jakarta: PT. Gramedia Pustaka Utama, 1992.

de Oca R. M. Salem A. Z. M., Kholif A. E., Monroy H., Perez L. S., Zamora, J. L. & Gutierez, A. Yeast: Description and Structure, in Yeast Additive and Animal Production PubBioMed Central Research Publishing Service, India. 2016.

Borelli B. M., Elaine G. Ferreira E. G., Lacerda I. C. A., Franco G. R. and Rosa C. A. "Yeast Populations Associated with the Artisanal Cheese Produced in the Region of Serra da Canastra, Brazil," World J. Microbiol. Biotechnol. vol. 22, p. 1115-1119, 2016.

Binetti A., Carrasco M., Reinheimer J. & Suarez V., "Yeasts from Autochthonal Cheese Starters: Technological and Functional Properties," Journal of Applied Microbiology, vol. 115, pp. 434-444, 2013.

Lioliou K., Litopoulou-Tzanetaki E., Tzanetakis N. & Robinson R. K., "Changes in the Microflora of Manouri, a Traditional Greek Whey Cheese, During Storage," International Journal of Dairy Technology, vol. 54, no. 3, pp. 100-106, 2001.

Lavoie, K., Touchette, M., St-Gelatin, D., & Labrie, S. “Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec”. Dairy Sci. Technol., vol. 92(5), pp. 455-468, 2012.

Tornadijo, M. E., Fresno J. M., Sarmiento R. M. & Carballo J. Study of the yeast during the ripening process of Armada cheeses from raw goat's milk. Lait, pp. 647-659, 1998.

Haridy, M. S. A. “Yeast Flora or raw milk in El- Minia City, Egypt”. Cryptog. Mycol, no. 13, pp. 321-326, 1992.

Seiler H. & M. Busse. “The yeast of cheese brine”. International Journal of Food Microbiology, vol. 11, pp. 289-304, 1990.

Pottier, I., Gente, S., Vermoux J., & Guí©guen M. “Safety Assessment of Dairy Microorganisms: Geotrichum candidium”. International Journal of Food Microbiology, vol. 126, pp. 327 - 332, 2008.

Rees E. M. R. & Stewart G. G.” The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity wort”. J. Inst. Brew. vol. 103, pp. 287-291, 1997.

Briggs D.E., Boulton C.A., Brookes P.A., & Stevens R. Brewing Science and Practice. Woodhead, Cambridge, UK, pp. 410-439, 2004.

Walker G.M. “Metals in yeast fermentation processes”. Adv. Appl. Microbiol. vol. 54, pp. 197-230, 2004.

Walker G.M., De Nicola R., Anthony S. & Learmonth R. “Yeast-metal interactions: impact on brewing and distilling fermentations”. J. Inst. Brew Dist. APSC. pp.19-24, 2006.

Udeh H.O. & Kgatla T.E. “Role of magnesium ions on yeast performance during very high gravity fermentation”. J. Brewing and Distilling, vol. 4(2), pp. 19-45, 2013.

Trofimova Y., Walker G.M., & Rapoport A. “Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration”. FEMS, vol. 308, pp. 55-61, 2010.

Okon A.A. & Nwabueze T.U. “Simultaneous effect of divalent cation in hydrolyzed cassava starch medium used by immobilized yeast for ethanol production”. Afr. J. Food Sci. vol. 3(8), pp. 217-222, 2009.

Slininger P.J., Dien B.S., Gorsich S.W. & Liu Z.L. “Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipties NRRL Y-7124”. Appl. Microbiol. Biotechnol. vol. 72, pp. 1285-1296, 2006.

Ali, M. N. & Khan, M. M. “Screening, identification and characterization of alcohol tolerant potential bioethanol producing yeasts”. Current Research in Microbiology and Biotechnology, vol. 2(1), pp. 316-324, 2014.

Ibeas, J. I. & Jimenez, J. “Mitochondrial DNA loss caused by ethanol in S.cereviseae flour yeasts”. Appl. Environ. Microbiol., vol. 63, pp. 7-12, 1997.

Tikka, C., Osuru, H. P., Atluri, N., Raghavulu, P.C.V., Kumar yellapu, N., Mannur, I. S., Aluru, P. S., Varma, N. K., & Bhaskar, “M. Isolation and characterization of ethanol-tolerant yeast strains”. Bioinformation, vol. 9(8), pp. 421-425, 2013.

You, K. M., Rosenfield, C. & Knipple, D. “Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content”. Applied and Environmental Microbiology, issue March, pp. 1449-1503, 2003.

Casey, G. P., & Ingledew, W. M. “Ethanol Tolerance in Yeasts”. Critical Reviews in Microbiology, vol. 13, pp. 219-280, 1986.

D’Amore, T., Panchal, C. J., Russell, I., & Stewart, G. G., “A study of ethanol tolerance in yeast". Critical Reviews in Biotechnology, vol. 9, pp. 287-304.

Piper P. W. “The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap”. FEMS Microbiology Letters, vol. 134, pp. 121-127, 1995.

Ding J., Huang X., Zhang L., Zhao N., Yang D. & Zhang K. “Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae”. Appl. Microbiol. Biotechnol., vol. 85, pp. 253-263, 2009.

Banat, I. M., Nigam P., Singh D., Merchant R., & McHale A. P., “Review: ethanol production at elevated temperatures and alcohol concentrations: Part I - Yeasts in general”. World Journal of Microbiology and Biotechnology. vol. 14, pp. 809-821, 1998.

Riles, L. & Fay, J. C. “Genetic basis of variation in heat and ethanol tolerance in Saccharomyces cerevisiae”. BioRxiv, issue May 2018.

Voordeckers, K., Kominek J., Das A., Espinosa-Cantíº A., and De Maeyer D. et al., “Adaptation to high ethanol reveals complex evolutionary pathways”. PLOS Genetics, vol. 11: e1005635, 2015.

Khatun, M. M., Yu X., Kondo A., Bai F., &. Zhao X, “Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein”. Bioresource Technology, vol. 245, pp. 1447-1454, 2017.

Kitichantaropas Y., Boonchird, C., Sugiyama M., Kaneko Y., Harashima S. & Auesukaree C. “Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation”. AMB Expr. vol. 6, pp. 107-120, 2016.

Nuanpeng S., Thanonkeo S., Yamada M. & Thanonkeo P. “Ethanol production from sweet sorghum juice at high temperatures using a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53”. Energies, vol. 9, pp. 253-272, 2016.

Sniegowski, P. D., Dombrowski, P. G. & Fingerman E. “Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics”. FEMS Yeast Res, vol. 1, pp. 299-306, 2002.

Taxis, C., Vogel F., & Wolf D. H., “ER-Golgi traffic is a prerequisite for efficient ER degradation”. Molecular Biology of the Cell, vol. 13, pp. 1806 -1818, 2002.

Zhang, Q., Tamura Y., Roy M., Adachi Y., Iijima M. & Sesaki, H. “Biosynthesis and roles of phospholipids in mitochondrial fusion, division, and mitophagy”. Cell Mol. Life Sci. vol 71, pp. 3767-3778. 2014.

Jarolim, S., Ayer A., Pillay B., Gee A. C., Phrakaysone A., Perrone G. G., Breitenbach M. & Dawes I.W., “Saccharomyces cerevisiae genes involved in survival of heat shock”. G3, vol, pp. 2321-2333, 2013.

Carratí¹, L., Franceschelli S., Pardini C. L., Kobayashi G. S., Horvath I., Vigh, L. & Maresca B. “Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast”. PNAS, vol. 93, pp. 3870-3875, 1996.

Jensen, D. & R. Schekman, “COPII-mediated vesicle formation at a glance”. Journal of Cell Science, vol 124, pp. 1-4, 2011.

Sopko, R., Huang D., Preston N., Chua G., Papp B., et al., “Mapping pathways and phenotypes by systematic gene overexpression”. Mol. Cell, vol. 21: 319-330, 2006.

Yoshikawa, K., Tanaka T., Ida Y., Furusawa C., Hirasawa T. & Shimizu H. “Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae”. Yeast, vol. 2, pp. 349-361, 2011.

Cocolin L., Bisson L. F. & Mills D.A. “Direct profiling of the yeast dynamics in wine fermentations”. FEMS Microbiol. Lett. Vol. 189, pp. 81-87, 2000.

Fleet, G. H. “Yeast interactions and wine flavor”. Int. J. Food Microbiol., vol. 86, pp. 11-22, 2003.

Pina C., Antonio J. & Hogg T. “Inferring ethanol tolerance of Saccharomyces and Non-Saccharomyces yeasts by progressive inactivation”. Biotechnol. lett.vol. 26(19) pp. 1521-1527, 2004.

Archana, K. M., Ravi R. & Anu-Appaiah K. A. “ Correlation between ethanol stress and cellular fatty acid composition of alcohol producing non-Saccharomyces in comparison with Saccharomyces cerevisiae by multivariate techniques”. J. Food Sci. and Tech. vol. 52(10), pp. 6770-6776, 2015.

Pina C., Santos C., Couto J.A. and Hogg, T. “Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae-influence of different culture conditions”. Food Microbiol., vol. 21(4), pp. 439-447, 2004.

Ma M. & Liu Z.L. “Mechanisms of ethanol tolerance in Saccharomyces cerevisiae”. Appl. Microbiol. Biotechnol. Vol. 87(3), pp. 829-845, 2010.

Charoenchai, C., Fleet, G. H. & P. A. Henschke. Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeasts. American Journal of Enology and Viticulture, vol. 49, p. 283-288, 1998.

D’Amato, D., Corbo, M. R., Del Nobile, M. A. & Sinigaglia, M. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. International Journal of Food Science and Technology, vol. 41, pp. 1152-1157, 2006.

Arroyo-Lopez, F. N., Orlic, S., Querol, A. & Bario, E. “Effects of temperature, pH, and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii, and their interspecific hybrid”. Int. J. of Food Microbiol.., vol. 131, pp. 120-127, 2009.

Myers, D., Lawlor, D. and Attfield, P. “Influence of invertase activity and glycerol synthesis and retention on fermentation of media with a high sugar concentration by Saccharomyces cerevisiae”. Appl. Environ. Microbiol., vol. 63, p. 145-150, 1997.

Mukerjhee V., Radecka D., Aerts G., Verstrepen K.J., Lievens B. & Thevelein J.M. “Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation”. Biotechnology for Biofuels, vol. 10, pp. 216, 2017.

Rantsiou K., Dolci P., Giacosa S., Torchio F., Torriani S., Suzzi G., Rolle L. & Cocolin L. “Candida zemplinina can reduce acetic acid produced by Saccharomyces cereviseae in sweet wine fermentations”. Appl. Environ. Mirobiol. vol. 78(6), pp. 1987-94, 2012.

Koulougliotis and Eriotou. “Isolation and identification of endogenous yeast strain in grapes and must solid of Mavrodafni Kefalonias and antioxidant activity of the produced red wine”. Fermentation Technology, vol. 5(1), pp. 1-9, 2016.

Utama G.L., Kurnani T.B.A., Sunardi, Cahyandito M.F. & Balia R.L. “Joint cost allocation of cheese-making wastes bioconversions into ethanol and organic liquid fertilizer”. Bulg. J. Agric. Sci. vol. 23(6), pp. 1016-1020, 2017.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).