Multiple Descriptors for Visual Odometry Trajectory Estimation
How to cite (IJASEIT) :
Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc
Van Gool. Speeded-up robust features (surf). Computer
vision and image understanding, 110(3):346-359, 2008.
Li-Hung Chen and Kai-Wei Chiang. The performance
analysis of stereo visual odometry assisted low-cost ins/gps
integration system. Smart Science, 3(3):148-156, 2015.
Hsiang-Jen Chien, Chen-Chi Chuang, Chia-Yen Chen, and
Reinhard Klette. When to use what feature? sift, surf,
orb, or a-kaze features for monocular visual odometry. In
Image and Vision Computing New Zealand (IVCNZ), 2016
International Conference on, pages 1-6. IEEE, 2016.
Jakob Engel, Thomas Sch¨ops, and Daniel Cremers. Lsdslam:
Large-scale direct monocular slam. In Computer
Vision-ECCV 2014, pages 834-849. Springer, 2014.
Marco Fanfani, Fabio Bellavia, and Carlo Colombo. Accurate
keyframe selection and keypoint tracking for robust
visual odometry. Machine Vision and Applications, 2016.
Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981.
Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and
Hang-Fei Cheng. Complete solution classification for the
perspective-three-point problem. IEEE transactions on
pattern analysis and machine intelligence, 25(8):930-943,
Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The
International Journal of Robotics Research, 32(11):1231-
, 2013.
Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.
Giorgio Grisetti, Slawomir Grzonka, Cyrill Stachniss,
Patrick Pfaff, and Wolfram Burgard. Efficient estimation
of accurate maximum likelihood maps in 3d. In Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, pages 3472-3478. IEEE, 2007.
Jie Guo, Zhihua Wei, and Duoqian Miao. Lane detection
method based on improved ransac algorithm. InAutonomous Decentralized Systems (ISADS), 2015 IEEE
Twelfth International Symposium on, pages 285-288. IEEE,
Itseez. The OpenCV Reference Manual. Itseez, 2.4.9.0
edition, April 2014.
J Kersten and V Rodehorst. Enhancement strategies for
frame-to-frame uas stereo visual odometry. International
Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences, 41, 2016.
Mathieu Labbe and Francois Michaud. Appearance-based
loop closure detection for online large-scale and long-term
operation. Robotics, IEEE Transactions on, 29(3):734-745,
Mathieu Labbe and Franc¸ois Michaud. Online global loop
closure detection for large-scale multi-session graph-based
slam. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 2661-2666.
IEEE, 2014.
Chengbo Liu, Qiang Shen, Hai Pan, and Miao Li. Modelling
and simulation: an improved ransac algorithm based
on the relative angle information of samples. International
Journal of Modelling, Identification and Control,
(2):144-152, 2017.
David G Lowe. Distinctive image features from scaleinvariant
keypoints. International journal of computer
vision, 60(2):91-110, 2004.
Mark Maimone, Yang Cheng, and Larry Matthies. Two
years of visual odometry on the mars exploration rovers.
Journal of Field Robotics, 24(3):169-186, 2007.
Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.
Raul Mur-Artal, JMM Montiel, and Juan D Tardos. Orbslam:
a versatile and accurate monocular slam system.
arXiv preprint arXiv:1502.00956, 2015.
Ra´ul Mur-Artal and Juan D. Tard´os. ORB-SLAM2: an
open-source SLAM system for monocular, stereo and RGBD
cameras. IEEE Transactions on Robotics, 33(5):1255-
, 2017.
David Nister, Oleg Naroditsky, and James Bergen. Visual
odometry. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, volume 1, pages I-I. Ieee,
Taih´u Pire, Thomas Fischer, Javier Civera, Pablo
De Crist´oforis, and Julio Jacobo Berlles. Stereo parallel
tracking and mapping for robot localization. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 1373-1378. IEEE, 2015.
Martin Rais, Gabriele Facciolo, Enric Meinhardt-Llopis,
Jean-Michel Morel, Antoni Buades, and Bartomeu Coll.
Accurate motion estimation through random sample aggregated
consensus. arXiv preprint arXiv:1701.05268, 2017.
Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: an efficient alternative to sift or surf. In Computer
Vision (ICCV), 2011 IEEE International Conference
on, pages 2564-2571. IEEE, 2011.
Mohammed Omar Salameh. MULTIPLE VISUAL DESCRIPTOR
combination FOR LOOP CLOSURE DETECTION
AND VISUAL ODOMETER TRAJECTORY ESTIMATION. PhD thesis, Universiti Kebangsaan Malaysia,
De-cai SHI, Xiu-cheng DONG, and Yu ZHENG. An improved
orthogonal iterative algorithm for monocular camera
pose estimation. DEStech Transactions on Computer
Science and Engineering, 3(aics), 2016.
Hauke Strasdat, JMM Montiel, and Andrew J Davison.
Real-time monocular slam: Why filter? In Robotics and
Automation (ICRA), 2010 IEEE International Conference
on, pages 2657-2664. IEEE, 2010.
Leo T¨ornqvist, Pentti Vartia, and Yrj¨o O Vartia. How
should relative changes be measured? The American Statistician,
(1):43-46, 1985.
Yue Wang, Jin Zheng, Qi-Zhi Xu, Bo Li, and Hai-Miao
Hu. An improved ransac based on the scale variation homogeneity.
Journal of Visual Communication and Image
Representation, 40:751-764, 2016.
Jun Yu, Chang-wei Luo, Chen Jiang, Rui Li, Ling-yan Li,
and Zeng-fu Wang. A digital video stabilization system
based on reliable sift feature matching and adaptive lowpass
filtering. In CCF Chinese Conference on Computer
Vision, pages 180-189. Springer, 2015.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).