Morphotectonic Identification Utilizing Satellite Imagery Processing on the Southern Part of Merapi Mount in Yogyakarta

Herry Riswandi (1), Emi Sukiyah (2), Boy Yoseph C.S.S. Syah Alam (3), Muhamad Sapari Dwi Hadian (4)
(1) Geological Postgraduate Program, Universitas Padjadjaran, Jl. Raya Bandung Sumedang, Jatinangor, Indonesia
(2) Geological Science Department, Universitas Padjadjaran, Jl. Raya Bandung Sumedang, Jatinangor, Indonesia
(3) Applied Geology Department, Universitas Padjadjaran, Jl. Raya Bandung Sumedang, Jatinangor, Indonesia
(4) Applied Geology Department, Universitas Padjadjaran, Jl. Raya Bandung Sumedang, Jatinangor, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Riswandi, Herry, et al. “Morphotectonic Identification Utilizing Satellite Imagery Processing on the Southern Part of Merapi Mount in Yogyakarta”. International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 3, June 2020, pp. 1326-33, doi:10.18517/ijaseit.10.3.8335.
This study investigates the relation between morphological spatial orientation features, lineaments trends and geological structures in the southern slope of Merapi Mountain in Yogyakarta, Indonesia. Digital processing using Landsat 8 OLI/TIRS and digital elevation model data 30 m resolution to construct and extract automatically identifying structure lineaments and stream network. Azimuth frequency and length density distribution analyze from morphological features. Geological structure controls the landscape were analyzed use profile data from the southerly flowing stream. The structure trends north-south were profiles taken with the topo-relief changes between the slightingly gradient and the depth of mountain front in the part of the south mountain slope. Dendritic-trellis stream modification types show different anomaly along surface stream profile intersects with fault and lineaments. Azimuth lineaments analysis indicating north-south, east-west, northeast-southwest, and northwest-southeast trends compared with stream surface flow system, the direction classification show similarity structures control trends in the geomorphological surface. These lineament structures provide cannelure for surface water flow. The lineaments form extraction divided into three population bases on an outcrop of the host rock, to getting information of geologic time trend evolution. Lineament trend spread into different lithology because of tectonic activity from the weak zone of surface discontinuity from the recent surface landscape.

R. W. Van Bemmelen, The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes. 1949.

I. Nurwidyanto, K. SB, Sismanto, & Waluyo, “The Sub Surface Modeling of Opak Fault Yogyakarta Region with Inversion Method of Gravity Data,” Int. J. Basic Appl. Sci., 14, (6), pp. 19-26, 2014.

J. D. Moody & M. J. Hill, “Wrench-fault tectonics,” Bull. Geol. Soc. Am., 67, (9), pp. 1207-1246, 1956, doi: 10.1130/0016-7606(1956)67[1207: WT]2.0.CO;2.

R. E. Wilcox, T. P. Harding, & D. R. Seely, “BASIC WRENCH TECTONICS.,” Am. Assoc. Pet. Geol. Bull., 57, (1), pp. 74-96, 1973, doi: 10.1306/819A424A-16C5-11D7-8645000102C1865D.

E. Sukiyah, E. Sunardi, N. Sulaksana, & P. P. Raditya Rendra, “Tectonic geomorphology of upper Cimanuk Drainage Basin, West Java, Indonesia,” Int. J. Adv. Sci. Eng. Inf. Technol., 8, (3), pp. 863-869, 2018, doi: 10.18517/ijaseit.8.3.5441.

E. Keller, N. Pinter, & D. Green, Active Tectonics, Earthquakes, Uplift, and Landscape. New Jersey: Prentice-Hall, 1996.

J. C. Doornkamp, “Geomorphological approaches to the study of neotectonics,” J. Geol. Soc. London., 143, (2), pp. 335-342, 1986, doi: 10.1144/gsjgs.143.2.0335.

A. B. Ariza-Villaverde, F. J. Jimí©nez-Hornero, & E. Gutií©rrez de Raví©, “Influence of DEM resolution on drainage network extraction: A multifractal analysis,” Geomorphology, 241, pp. 243-254, 2015, doi: 10.1016/j.geomorph.2015.03.040.

B. Y. C. S. Ummah, Khairul; Sukiyah, Emi; Rosana, Mega Fatimah; Alam, “Remote Sensing Identification of Possible Meteorite Impact Crater on Ciletuh , West Java .,” Int. J. Adv. Sci. Eng. Inf. Technol., 8, (5), pp. 1962-1968, 2018, doi: 10.18517/ijaseit.8.5.5559.

D. P. Leech, P. J. Treloar, N. S. Lucas, & J. Grocott, “Landsat TM analysis of fracture patterns: A case study from the Coastal Cordillera of northern Chile,” Int. J. Remote Sens., 24, (19), pp. 3709-3726, 2003, doi: 10.1080/0143116031000102520.

R. G. Thannoun, “Automatic Extraction and Geospatial Analysis of Lineaments and their Tectonic Significance in some areas of Northern Iraq using Remote Sensing Techniques and GIS,” Int. J. Enhanc. Res. schience Technol. Eng., 2, (2), pp. 1-11, 2013.

J. Meixner, J. C. Grimmer, A. Becker, E. Schill, & T. Kohl, “Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany),” J. Struct. Geol., 108, pp. 256-268, 2018, doi: 10.1016/j.jsg.2017.11.006.

M. Ramdhan et al., “Relocation of hypocenters from DOMERAPI and BMKG networks: a preliminary result from DOMERAPI project,” Earthq. Sci., 30, (2), pp. 67-79, 2017, doi: 10.1007/s11589-017-0178-3.

F. Gob et al., “River responses to the 2010 major eruption of the Merapi volcano, central Java, Indonesia,” Geomorphology, 273, pp. 244-257, 2016, doi: 10.1016/j.geomorph.2016.08.025.

D. Gentana, E. Sukiyah, N. Sulaksana, E. T. Yuningsih, & L. Balia, “Determination of Tanggamus Geothermal Prospect Area, Lampung Province, South Sumatra Based on Remote Sensing and 3D Micromine Software,” FIG Work. Week, 8871, 2017.

X. Shi & B. Xue, “Deriving a minimum set of viewpoints for maximum coverage over any given digital elevation model data,” 8947, (July), 2016, doi: 10.1080/17538947.2016.1207718.

H. G. Hartono, A. Sudradjat, & O. Verdiansyah, “Caldera of Godean, Sleman, Yogyakarta: A Volcanic Geomorphology Review,” Forum Geogr., 31, (1), pp. 139-148, 2017, doi: 10.23917/forgeo. v31i1.2821.

Surono, “Litostratigrafi dan sedimentasi Formasi Kebo dan Formasi Butak di Pegunungan Baturagung, Jawa Tengah Bagian Selatan,” Indones. J. Geosci., 3, (4), pp. 183-193, 2008, doi: http://dx.doi.org/10.1016/j.ijpe.2010.01.014.

A. Surono & Permana, “Lithostratigraphic And Sedimentological Significants Of Deepening Marine Sediments of The Sambipitu Formation Gunung Kidul Residence, Yogyakarta,” Bull. Mar. Geol., 26, (1), pp. 15-30, 2009.

H. Gendoet & B. Sutikno, “Gunungkidul, Yogyakarta,” Indones. J. Geosci., 2007.

R. Gertisser, S. J. Charbonnier, J. Keller, & X. Quidelleur, “The geological evolution of Merapi volcano, Central Java, Indonesia,” Bull. Volcanol., 74, (5), pp. 1213-1233, 2012, doi: 10.1007/s00445-012-0591-3.

H. Rahardjo, Wartono; Sukandarrumidi; Rosidi, “Geological Map of the Yogyakarta Sheet, Java.” Geological Research and Development Centre, Bandung, 1995.

G. M. Buchanan et al., “Free satellite data key to conservation,” Science (80)., 361, (6398), pp. 139-140, 2018, doi: 10.1126/science. aau2650.

T. Liu, H. Yan, & L. Zhai, “Extract relevant features from DEM for groundwater potential mapping,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2015, pp. 112-119, doi: 10.5194/isprsarchives-XL-7-W4-113-2015.

T. Oguchi, T. Aoki, & N. Matsuta, “Identification of an active fault in the Japanese Alps from DEM-based hill shading,” Comput. Geosci., 29, (7), pp. 885-891, 2003, doi: 10.1016/S0098-3004(03)00083-9.

F. Veronesi & L. Hurni, “A GIS tool to increase the visual quality of relief shading by automatically changing the light direction,” Comput. Geosci., 74, pp. 121-127, 2015, doi: 10.1016/j.cageo.2014.10.015.

K. A. Mogaji, O. S. Aboyeji, & G. O. Omosuyi, “Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques,” Int. J. Water Resour. Environ. Eng., 3, (7), pp. 150-160, 2011.

C. L. Salui, “Methodological Validation for Automated Lineament Extraction by LINE Method in PCI Geomatica and MATLAB based Hough Transformation,” J. Geol. Soc. India, 92, pp. 321-328, 2018, doi: 10.1007/s12594-018-1015-6.

A. V. Argyriou, R. M. Teeuw, D. Rust, & A. Sarris, “GIS multi-criteria decision analysis for assessment and mapping of neotectonic landscape deformation: A case study from Crete,” Geomorphology, 253, pp. 262-274, 2016, doi: 10.1016/j.geomorph.2015.10.018.

K. Pareta & U. Pareta, “Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India using ASTER (DEM) Data and GIS,” Int. J. Geomatics Geosci., 2, (1), pp. 278-284, 2011.

E. Flores-Prieto, G. Quí©ní©herví©, F. Bachofer, F. Shahzad, & M. Maerker, “Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data,” Geomorphology, 248, pp. 427-439, 2015, doi: 10.1016/j.geomorph.2015.07.049.

L. Guerit, S. Dominguez, J. Malavieille, & S. Castelltort, “Deformation of an experimental drainage network in oblique collision,” Tectonophysics, 693, pp. 210-222, 2016, doi: 10.1016/j.tecto.2016.04.016.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).