Development of Rule-Based Feature Extraction in Multi-label Text Classification
How to cite (IJASEIT) :
M. N. Al-Kabi, H. A. Wahsheh, I. M. Alsmadi, and A. Moh’d Ali Al-Akhras, “Extended Topical Classification of Hadith Arabic Text,” Int. J. Islam. Appl. Comput. Sci. Technol., vol. 3, no. 3, pp. 13-23, 2015.
S. Al Faraby, E. R. R. Jasin, A. Kusumaningrum, and others, “Classification of hadith into positive suggestion, negative suggestion, and information,” in Journal of Physics: Conference Series, 2018, vol. 971, no. 1, p. 12046.
D. Rahmawati and M. L. Khodra, “Automatic multilabel classification for Indonesian news articles,” in Advanced Informatics: Concepts, Theory and Applications (ICAICTA), 2015 2nd International Conference on, 2015, pp. 1-6.
D. Rahmawati and M. L. Khodra, “Word2vec semantic representation in multilabel classification for Indonesian news article,” in Advanced Informatics: Concepts, Theory And Application (ICAICTA), 2016 International Conference On, 2016, pp. 1-6.
R. A. Pane, M. S. Mubarok, N. S. Huda, and others, “A Multi-Lable Classification on Topics of Quranic Verses in English Translation Using Multinomial Naive Bayes,” in 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018, pp. 481-484.
A. M. K. Izzaty, M. S. Mubarok, N. S. Huda, and Adiwijaya, “A Multi-label Classification on Topics of Quranic Verses in English Translation Using Tree Augmented Na�ve Bayes,” in 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv Prepr. arXiv1301.3781, 2013.
J. Lilleberg, Y. Zhu, and Y. Zhang, “Support vector machines and word2vec for text classification with semantic features,” in Cognitive Informatics & Cognitive Computing (ICCI* CC), 2015 IEEE 14th International Conference on, 2015, pp. 136-140.
A. I. Pratiwi and others, “On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis,” Appl. Comput. Intell. Soft Comput., vol. 2018, 2018.
M. S. Mubarok, Adiwijaya, and M. D. Aldhi, “Aspect-based sentiment analysis to review products using Na{"i}ve Bayes,” in AIP Conference Proceedings, 2017, vol. 1867, no. 1, p. 20060.
M. S. Sorower, “A literature survey on algorithms for multi-label learning,” Oregon State Univ. Corvallis, vol. 18, 2010.
Z. Hao and B. Liu, “A rule based feature selection approach for target classification in wireless sensor networks with sensitive data applications,” Int. J. Distrib. Sens. Networks, vol. 10, no. 4, p. 429651, 2014.
M.-L. Zhang, J. M. Peña, and V. Robles, “Feature selection for multi-label naive Bayes classification,” Inf. Sci. (Ny)., vol. 179, no. 19, pp. 3218-3229, 2009.
N. D. Patel and C. Chand, “Selecting Best Features Using Combined Approach in POS Tagging for Sentiment Analysis.” IJCSMC, 2014.
B. M. Badr and S. S. Fatima, “Using skipgrams, bigrams, and part of speech features for sentiment classification of twitter messages,” in Proceedings of the 12th International Conference on Natural Language Processing, 2015, pp. 268-275.
Z. Su, H. Xu, D. Zhang, and Y. Xu, “Chinese sentiment classification using a neural network tool — Word2vec,” in 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014, pp. 1-6.
B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature recognition with rule-based pattern recognition,” Comput. Ind., vol. 59, pp. 321-337, 2008.
D. Fu, B. Zhou, and J. Hu, “Improving SVM based multi-label classification by using label relationship,” in Neural Networks (IJCNN), 2015 International Joint Conference on, 2015, pp. 1-6.
C. D. Manning, P. Raghavan, and H. Schutze, “Introduction to Information Retrieval,” vol. 39, 2008.
A. Dinakaramani, F. Rashel, A. Luthfi, and R. Manurung, “Designing an Indonesian part of speech tagset and manually tagged Indonesian corpus,” in Asian Language Processing (IALP), 2014 International Conference on, 2014, pp. 66-69

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).