Measuring the Substitution of Vegetable Waste Fermented Rumen Fluid with Tofu Waste in Vannamei Shrimp Feed

- Murni (1), - Haryati (2), Herry Sonjaya (3), Siti Aslamyah (4)
(1) University of Muhammadiyah Makassar of South Sulawesi Province, Indonesia
(2) Aquaculture, Faculty of Marine Science and Fishery, Hasanuddin University, Makassar, South Sulawesi, Indonesia
(3) Aquaculture, Faculty of Marine Science and Fishery, Hasanuddin University, Makassar, South Sulawesi, Indonesia
(4) Faculty of Animal Husbandry, Hasanuddin University, Makassar, South Sulawesi, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Murni, -, et al. “Measuring the Substitution of Vegetable Waste Fermented Rumen Fluid With Tofu Waste in Vannamei Shrimp Feed”. International Journal on Advanced Science, Engineering and Information Technology, vol. 9, no. 6, Dec. 2019, pp. 2114-21, doi:10.18517/ijaseit.9.6.9491.
Vannamei shrimp cultivation in Indonesia deals with the complication at high feed fees as a result of raw material feed protein sources. Rumen fluid fermented vegetable waste has the potential to substitute tofu in feed Litopenaues vannamei. This study aims to determine the substitution of vegetable waste with the rumen fluid fermented tofu is best to improve the performance of vannamei shrimp growth. Research carried out for 60 days with evaluation substitution levels of rumen fluid fermented vegetable waste with tofu in vannamei shrimp feed. designed using a completely randomized design (CRD) with 4 treatments each with 3 replications, thus totaling 12 experimental units. Feed treatment tested is A) 0 (control), B) 33.33, C) 66.67, D) 100% rumen fluid fermented vegetable waste.  The results showed that the substitution of tofu with fermented vegetable waste rumen fluid in vannamei shrimp feed a significant effect (P <0.05) on digestive enzyme activity, total and nutrient digestibility, growth, and survival rate of vannamei shrimp. The research shows that the tofu substitution more than sixty percent of fermented vegetable waste could improve feed efficiency to more than a quarter of vannamei shrimp growth. Tofu substitution of rumen fluid fermented vegetable waste in feed could increase the activity of digestive enzymes, total digestibility, nutrient digestibility, growth, and survival of juvenile vannamei shrimp.

Y. Andriani, “Assessment on Cow Rumen Fluid Celluloseamylase Enzyme Activity As An Alternative Source of Crude Fiber Degrading Enzyme in Fish Feed Materials,” Lucr. ȘtiinÈ›ifice-Universitatea ȘtiinÈ›e Agric. È™i Med. Vet. Ser. Zooteh., vol. 63, pp. 242-245, 2015.

Murni and Darmawati, “Optimize the use of Liquid Rumen in Fermentation Process on Increased the Nutrients Waste Vegetables For Tilapia`S Feed,” Int. J. Ocean. Oceanogr., vol. 10, no. 1, pp. 19-28, 2016.

Murni, Darmawati, and M. I. Amri, “Optimasi Lama Waktu Fermentasi Limbah Sayur dengan Cairan Rumen terhadap Peningkatan Kandungan Nutrisi Pakan Ikan Nila ( Oreochromis Niloticus ),” J. Ilmu Perikan. OCTOPUS, vol. 6, pp. 541-545, 2017.

Murni, Haryati, S. Alamsyah, and H. Sonjaya, “The Nutrition Waste Vegetables with Invitro Using Rumen Liquids for Feed,” J. Food Nutr. Sci., vol. 6, no. 2, p. 58, 2018.

D. Jusadi, J. Ekasari, and A. Kurniansyah, “Improvement of cocoa-pod husk using sheep rumen liquor for tilapia diet,” J. Akuakultur Indones., vol. 12, no. 1, pp. 40-47, 2014.

I. Fitriliyani, “Evaluation of the nutritional value of Leucaena leucophala leaf meal hydrolyzed by sheep rumen liquor enzyme extract on the growth performance of Nile tilapia (Oreochromis niloticus),” J. Akuakultur Indones., vol. 9, no. 1, pp. 30-37, 2010.

E. Listiowati and T. B. Pramono, “Potensi pemanfaatan daun singkong (Manihot utillisima) terfermentasi sebagai bahan pakan ikan nila (Oreochromis sp),” Berk. Perikan. Terubuk, vol. 42, no. 2, 2014.

L. R. D’Abramo, D. E. Conklin, D. M. Akiyama, I. W. G. on C. Nutrition, and W. A. Society, Crustacean Nutrition. World Aquaculture Society, 1997.

M. Takeuchi et al., “Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells,” J. Biol. Chem., vol. 263, no. 8, pp. 3657-3663, 1988.

H.-Ui. Bergmeyer, Methods of Enzymatic Analysis, vol. 2. Elsevier Science, 2012.

P. Bernfeld, “[17] Amylases, α and β,” 1955, pp. 149-158.

P. G. Dehaghani, M. J. Baboli, A. T. Moghadam, S. Ziaei-Nejad, and M. Pourfarhadi, “Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinus carpio) fingerlings,” Czech J. Anim. Sci., vol. 60, no. 5, pp. 224-232, 2015.

A. D. Eaton et al., Standard Methods for the Examination of Water & Wastewater, no. v. 21. American Public Health Association, 2005.

AOAC International, Official methods of analysis of AOAC International, 20th Editi. Rockville, Maryland, USA: AOAC International, 2016.

W. P. Lokapirnasari, D. S. Nazar, T. Nurhajati, K. Supranianondo, and A. B. Yulianto, “Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia.,” Vet. world, vol. 8, no. 3, pp. 367-71, Mar. 2015.

Hamsah, “Growth Performance, Immune Response and Resistance shrimp larvae,” Institut Pertanian Bogor, 2017.

S. Haryati, Aslamyah, and Surianti, “Influence of Tofu Dregs cake by using microorganisms Fermentation Mix on Digestive Enzyme Activity Juvenil Vanname shrimp,” in Symposium on Marine and Fisheries, 2017.

A. Masria, S. Aslamyah, and Zainuddin, “Effect of Rumen Fluid Cows at Various Levels Carbohydrates in Feed Enzyme Activity Gastrointestinal against milkfish Chanos Chanos-Forsskal,” in Symposium on Marine and Fisheries All 4.

G. Rajkumar, P. S. Bhavan, V. Srinivasan, R. Udayasuriyan, M. Karthik, and T. Satgurunathan, “Partial Replacement of Fishmeal with Marine Algae Turbinaria ornata and Gracilaria corticata for Sustainable Culture of the Freshwater Prawn Macrobrachium rosenbergii,” Int. J. Res. Stud. Zool, vol. 3, no. 2, pp. 32-44, 2017.

D. M. Akiyama, “Penaeid shrimp nutrition for the commercial feed industry: Revised,” in Proceeding of the aquaculture feed processing and nutrition workshop, 1991, pp. 80-98.

Q. Yang, X. Zhou, Q. Zhou, B. Tan, S. Chi, and X. Dong, “Apparent digestibility of selected feed ingredients for white shrimp Litopenaeus vannamei, Boone,” Aquac. Res., vol. 41, no. 1, pp. 78-86, Dec. 2009.

P. G. Lee and A. L. Lawrence, “Digestibility,” Crustac. Nutr., vol. 6, pp. 194-260, 1997.

M. Terrazas-Fierro, R. Civera-Cerecedo, L. Ibarra-Martí­nez, E. Goytortíºa-Bores, M. Herrera-Andrade, and A. Reyes-Becerra, “Apparent digestibility of dry matter, protein, and essential amino acid in marine feedstuffs for juvenile whiteleg shrimp Litopenaeus vannamei,” Aquaculture, vol. 308, no. 3-4, pp. 166-173, Oct. 2010.

D. A. Villarreal-Cavazos, “Apparent digestibility of dry matter, crude protein, and amino acids of six rendered by-products in juvenile Litopenaeus vannamei,” Ciencias Mar., vol. 40, no. 3, pp. 163-172, Sep. 2014.

B. Zuliyan, A. Agustono, and W. H. Satyantini, “Pengaruh Subtitusi Kedelai dengan Fermentasi Tepung Daun Lamtoro pada Pakan Udang Vaname (Litopenaeus Vannamei) terhadap Nilai Kecernaan Protein dan Kecernaan Energi,” J. Aquac. Fish Heal., vol. 6, no. 3, p. 129, Jan. 2019.

Y.-L. Shiu, S.-L. Wong, W.-C. Guei, Y.-C. Shin, and C.-H. Liu, “Increase in the plant protein ratio in the diet of white shrimp, Litopenaeus vannamei (Boone), using Bacillus subtilis E20-fermented soybean meal as a replacement,” Aquac. Res., vol. 46, no. 2, pp. 382-394, Feb. 2015.

Y. Jiang, P.-F. Zhao, S.-M. Lin, R.-J. Tang, Y.-J. Chen, and L. Luo, “Partial substitution of soybean meal with fermented soybean residue in diets for juvenile largemouth bass, Micropterus salmoides,” Aquac. Nutr., vol. 24, no. 4, pp. 1213-1222, Aug. 2018.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).