Effect of Heat Source on the Formation of Welding Zone Structure between Carbon Steel and Stainless Steel Applied in Shipbuilding

Thi Nhung Le (1), Anh Tuan Vu (2), Huu Cuong Le (3), Van Huong Dong (4), Van Phuc Nguyen (5), Thanh Nam Dang (6)
(1) School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
(2) Faculty of Basic-Fundamental Sciences, Vietnam Maritime University, Hai Phong City, Vietnam
(3) Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
(4) Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
(5) Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
(6) Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
Fulltext View | Download
How to cite (IJASEIT) :
Le, Thi Nhung, et al. “Effect of Heat Source on the Formation of Welding Zone Structure Between Carbon Steel and Stainless Steel Applied in Shipbuilding”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 2, Apr. 2024, pp. 749-60, doi:10.18517/ijaseit.14.2.18828.
This work presents the influence of heat sources on forming the weld zone structures between carbon steel and stainless steel. The results show that the weld structure includes the melting, transition, and heat-affected zones. The microstructure on the stainless-steel side is in the form of δ-Ferrite with thin fibers and clusters of Widmantes Austenite formed due to the high cooling rate in this area. On the carbon steel side, the influence of the concentration gradient and cooling rate changes the crystallization pattern from A-A-FA. The structure obtained from the melting boundary is a completely Austenite to Austenite + δ-Ferrite zone with δ-Ferrite varying from cylindrical, dendritic, and axial crystal forms. The δ-Ferrite content is inversely proportional to the hardness. In the melting zone, the change in the ratio value between temperature gradient and crystallization rate is the cause of the change in δ-Ferrite in this region. The HAZ region has Widmanstet phases, Bainite, and Martensite, which are phases with high hardness and brittleness. This area is thus easily destroyed. The results on the microhardness of the weld in the transition zone on the carbon steel side show that the microhardness result is 390HV in the fusion boundary area, the hardness value in the weld metal area ranges from 160 to 173HV, and the primary metal hardness value of carbon steel is from 134 to 146HV.

Vo D-T, Nguyen D-N, Nguyen T-D, Nguyen X-P, Said Z, Nguyen D-T. Influence of diffusion mode on microstructure and mechanical properties of carbonitriding layer. 2022 Adv. Sci. Eng. Technol. Int. Conf., IEEE; 2022, p. 1–7. doi: 10.1109/ASET53988.2022.9734917.

Pham X., Hoang A., Nguyen D. A study on the effect of the change of tempering temperature on the microstructure transformation of Cu-Ni-Sn alloy. Int J Mech Mechatronics Eng 2018;18:27–34.

Nguyen DN, Hoang AT, Pham XD, Sai MT, Chau MQ, Pham V V. Effect of sn component on properties and microstructure CU-NI-SN alloys. J Teknol 2018;80:43–51. doi:10.11113/jt.v80.11867.

Kluczyk M, Grządziela A, Batur T. Design and Operational Diagnostics of Marine Propellers Made of Polymer Materials. Polish Marit Res 2022;29:115–22. doi:10.2478/pomr-2022-0049.

Kowalski J, Kozak J. Influence of Material Thickness on the Ductile Fracture of Steel Plates for Shipbuilding. Polish Marit Res 2022;29:160–6. doi:10.2478/pomr-2022-0036.

Kazymyrenko Y, Solomoniuk N, Drozd O. Glass Microspheres Thermo-Deformation Sintering Processes in the Technologies of Obtaining Materials for Underwater Technical Equipment. Polish Marit Res 2023;30:174–80. doi:10.2478/pomr-2023-0050.

Nguyen VN, Nguyen AX, Nguyen DT, Le HC, Nguyen VP. A Comprehensive Understanding of Bainite Phase Transformation Mechanism in TRIP Bainitic-supported Ferrite Steel. Int J Adv Sci Eng Inf Technol 2024;14:309–25. doi:10.18517/ijaseit.14.1.19706.

Pham XD, Hoang AT, Nguyen DN, Le VV. Effect of factors on the hydrogen composition in the carburizing process. Int J Appl Eng Res 2017;12:8238–8244.

Hoang A., Nguyen D., Pham V. Heat treatment furnace for improving the weld mechanical properties: Design and fabrication. Int J Mech Eng Technol 2018;9:496–506.

Pham MK, Nguyen DN, Hoang AT. Influence of vanadium content on the microstructure and mechanical properties of high-manganese steel. Int J Mech Mechatronics Eng 2018;18:141–147.

Hoang AT, Tran TT Van, Nguyen VB, Nguyen DN. Effect of Heat Treatment Process on The Microstructure and Mechanical Properties of The Spray Coating Ni-Cr on CT38 Steel. Int J Adv Sci Eng Inf Technol 2019;9:560–8. doi:10.18517/ijaseit.9.2.7891.

Xuan Tran T, Phuong Nguyen X, Nam Nguyen D, Toai Vu D, Quang Chau M, Ibrahim Khalaf O, et al. Effect of Poly-Alkylene-Glycol Quenchant on the Distortion, Hardness, and Microstructure of 65Mn Steel. Comput Mater Contin 2021;67:3249–64. doi:10.32604/cmc.2021.015411.

Vo D-T, Nguyen D-N, Sai M-T, Said Z, Nguyen X-P, Nguyen D-T. A study of microstructure and properties of Cu-Ni-Sn alloy when deformation and aging. 2022 Adv. Sci. Eng. Technol. Int. Conf., IEEE; 2022, p. 1–6.

Tuan Hoang A, Phuong Nguyen X, Ibrahim Khalaf O, Xuan Tran T, Quang Chau M, Minh Hao Dong T, et al. Thermodynamic Simulation on the Change in Phase for Carburizing Process. Comput Mater Contin 2021;68:1129–45. doi:10.32604/cmc.2021.015349.

Abid M, Kchaou M, Hoang AT, Haboussi M. Wear Mechanisms Analysis and Friction Behavior of Anodic Aluminum Oxide Film 5083 under Cyclic Loading. J Mater Eng Perform 2024;33:1527–1537. doi:10.1007/s11665-023-08616-8.

Wang Y, Chen X, Konovalov S V. Additive manufacturing based on welding arc: a low-cost method. J Surf Investig X-Ray, Synchrotron Neutron Tech 2017;11:1317–28.

Singh R. Applied welding engineering: processes, codes, and standards. Butterworth-Heinemann; 2020.

Karayel E, Bozkurt Y. Additive manufacturing method and different welding applications. J Mater Res Technol 2020;9:11424–38.

Wang B, Hu SJ, Sun L, Freiheit T. Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst 2020;56:373–91.

Khedr M, Hamada A, Järvenpää A, Elkatatny S, Abd-Elaziem W. Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals (Basel) 2022;13:54. doi:10.3390/met13010054.

Serindağ HT, Çam G. Characterizations of Microstructure and Properties of Dissimilar AISI 316L/9Ni Low-Alloy Cryogenic Steel Joints Fabricated by Gas Tungsten Arc Welding. J Mater Eng Perform 2023;32:7039–49. doi;10.1007/s11665-022-07601-x.

Laska A, Szkodo M. Manufacturing Parameters, Materials, and Welds Properties of Butt Friction Stir Welded Joints–Overview. Materials (Basel) 2020;13:4940. doi:10.3390/ma13214940.

Chang J, Cao R, Yan Y. The joining behavior of titanium and Q235 steel joined by cold metal transfer joining technology. Materials (Basel) 2019;12. doi:10.3390/ma12152413.

Lee CH, Chang KH. Temperature fields and residual stress distributions in dissimilar steel butt welds between carbon and stainless steels. Appl Therm Eng 2012;45–46. doi:10.1016/j.applthermaleng.2012.04.007.

Welding metallurgy and weldability of stainless steels. Choice Rev Online 2005;43. doi:10.5860/choice.43-2230.

Shi H, Chen K, Liang Z, Dong F, Yu T, Dong X, et al. Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. J Mater Sci Technol 2017;33:359–66.

Sonar T, Balasubramanian V, Malarvizhi S, Venkateswaran T, Sivakumar D. An overview on welding of Inconel 718 alloy-Effect of welding processes on microstructural evolution and mechanical properties of joints. Mater Charact 2021;174:110997.

Zhou Q, Liu R, Ran C, Fan K, Xie J, Chen P. Effect of microstructure on mechanical properties of titanium-steel explosive welding interface. Mater Sci Eng A 2022;830:142260.

Umar M, Sathiya P. Influence of melting current pulse duration on microstructural features and mechanical properties of AA5083 alloy weldments. Mater Sci Eng A 2019;746:167–78.

Zhang J, Xin W, Luo G, Wang R, Meng Q. Significant influence of welding heat input on the microstructural characteristics and mechanical properties of the simulated CGHAZ in high nitrogen V-alloyed steel. High Temp Mater Process 2020;39:33–44.

Pankaj P, Tiwari A, Biswas P. Impact of varying tool position on the intermetallic compound formation, metallographic/mechanical characteristics of dissimilar DH36 steel, and aluminum alloy friction stir welds. Weld World 2021:1–33.

Verma J, Taiwade RV. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. J Manuf Process 2017;25:134–52. doi:10.1016/j.jmapro.2016.11.003.

Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process 2020;58:377–406. doi:10.1016/j.jmapro.2020.08.019.

Dunđer M, Vuherer T, Samardžić I, Marić D. Analysis of heat-affected zone microstructures of steel P92 after welding and after post-weld heat treatment. Int J Adv Manuf Technol 2019;102:3801–12. doi:10.1007/s00170-019-03513-8.

Yamagishi H. High-Productivity and High-Strength Fe/Al and Al/Al Dissimilar Joining by Spot Forge-Welding. Metall Mater Trans A 2021;52:741–52. doi:10.1007/s11661-020-06118-z.

Kumar N, Pandey C, Kumar P. Dissimilar Welding of Inconel Alloys With Austenitic Stainless-Steel: A Review. J Press Vessel Technol 2023;145. doi:10.1115/1.4055329.

Jabar S, Barenji AB, Franciosa P, Kotadia HR, Ceglarek D. Effects of the adjustable ring-mode laser on intermetallic formation and mechanical properties of steel to aluminium laser welded lap joints. Mater Des 2023;227:111774.

Cheng Z, Ye Z, Huang J, Yang J, Chen S, Zhao X. Influence of heat input on the intermetallic compound characteristics and fracture mechanisms of titanium-stainless steel MIG-TIG double-sided arc welding joints. Intermetallics 2020;127:106973.

David SA, Deevi SC. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications. Sci Technol Weld Join 2017;22:681–705.

Tao T, Zhou D, Liu J, Wang X. Improvement of laser welded joint properties of AZ31B magnesium alloy to DP590 dual-phase steel produced by external magnetic field. J Manuf Process 2022;79:270–83.

Le TN, Pham MK, Hoang AT, Bui, TNM, Nguyen DN. Microstructure change for multi-pass welding between Austenitic stainless steel and carbon steel. J Mech Eng Res Dev 2018;41:97–102. doi:10.26480/jmerd.02.2018.97.102.

Saadati M, Nobarzad AKE, Jahazi M. On the hot cracking of HSLA steel welds: Role of epitaxial growth and HAZ grain size. J Manuf Process 2019;41:242–51.

Cabrilo A, Geric K. Fracture mechanic and charpy impact properties of a crack in weld metal, HAZ and base metal of welded armor steel. Procedia Struct Integr 2018;13:2059–64.

Cao R, Feng Z, Chen JH. Microstructures and properties of titanium-copper lap welded joints by cold metal transfer technology. Mater Des 2014;53. doi:10.1016/j.matdes.2013.06.030.

Tomashchuk I, Sallamand P, Belyavina N, Pilloz M. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer. Mater Sci Eng A 2013;585. doi:10.1016/j.msea.2013.07.050.

Chu Q, Zhang M, Li J, Yan C, Qin Z. Influence of vanadium filler on the properties of titanium and steel TIG welded joints. J Mater Process Technol 2017;240. doi:10.1016/j.jmatprotec.2016.06.018.

He P, Zhang J, Zhou R, Li X. Diffusion bonding technology of a titanium alloy to a stainless steel web with an Ni interlayer. Mater Charact 1999;43. doi:10.1016/S1044-5803(99)00008-X.

Tomashchuk I, Sallamand P, Andrzejewski H, Grevey D. The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd:YAG laser joints. Intermetallics 2011;19. doi:10.1016/j.intermet.2011.05.016.

Hao X, Dong H, Li S, Xu X, Li P. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire. J Mater Process Technol 2018;257. doi:10.1016/j.jmatprotec.2018.02.020.

Yao C, Xu B, Zhang X, Huang J, Fu J, Wu Y. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint. Opt Lasers Eng 2009;47. doi:10.1016/j.optlaseng.2009.02.004.

Zhao Y, Wang W, Yan K, Liu C, Zou J. Microstructure and properties of Cu/Ti laser welded joints. J Mater Process Technol 2018;257. doi:10.1016/j.jmatprotec.2018.03.001.

Chen S, Zhang M, Huang J, Cui C, Zhang H, Zhao X. Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater Des 2014;53. doi:10.1016/j.matdes.2013.07.044.

Magnabosco I, Ferro P, Bonollo F, Arnberg L. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel. Mater Sci Eng A 2006;424. doi:10.1016/j.msea.2006.03.096.

Huang J, He X, Guo Y, Zhang Z, Shi Y, Fan D. Joining of aluminum alloys to galvanized mild steel by the pulsed DE-GMAW with the alternation of droplet transfer. J Manuf Process 2017;25. doi:10.1016/j.jmapro.2016.10.003.

Sun QJ, Li JZ, Liu YB, Li BP, Xu PW, Feng JC. Microstructural characterization and mechanical properties of Al/Ti joint welded by CMT method—Assisted hybrid magnetic field. Mater Des 2017;116. doi:10.1016/j.matdes.2016.12.025.

Zhou X, Zhang G, Shi Y, Zhu M, Yang F. Microstructures and mechanical behavior of aluminum-copper lap joints. Mater Sci Eng A 2017;705. doi:10.1016/j.msea.2017.08.056.

Cao R, Chang JH, Huang Q, Zhang XB, Yan YJ, Chen JH. Behaviors and effects of Zn coating on welding-brazing process of Al-Steel and Mg-steel dissimilar metals. J Manuf Process 2018;31. doi:10.1016/j.jmapro.2018.01.001.

Kang Y, Park G, Jeong S, Lee C. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel. Metall Mater Trans A 2018;49:177–86. doi:10.1007/s11661-017-4384-3.

Zhang Z, Jing H, Xu L, Han Y, Li G, Zhao L. Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint. J Mater Eng Perform 2017;26:134–50. doi:10.1007/s11665-016-2441-5.

Li S, Li J, Sun G, Deng D. Modeling of welding residual stress in a dissimilar metal butt-welded joint between P92 ferritic steel and SUS304 austenitic stainless steel. J Mater Res Technol 2023;23. doi:10.1016/j.jmrt.2023.02.123.

Bezawada S, Gajjela R. Microstructural and Mechanical Characterization of Welded Joints between Stainless Steel and Hastelloy Made Using Pulsed Current Gas Tungsten Arc Welding. J Mater Eng Perform 2023;32. doi:10.1007/s11665-022-07197-2.

Wang B, Qiu F, Chen L, Zhou Q, Dong B, Yang H, et al. Microstructure and shearing strength of stainless steel/low carbon steel joints produced by resistance spot welding. J Mater Res Technol 2022;20. doi:10.1016/j.jmrt.2022.08.041.

Shen J, Gonçalves R, Choi YT, Lopes JG, Yang J, Schell N, et al. Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr Mater 2023;222. doi:10.1016/j.scriptamat.2022.115053.

Wang J, Lu MX, Zhang L, Chang W, Xu LN, Hu LH. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int J Miner Metall Mater 2012;19. doi:10.1007/s12613-012-0589-z.

Safari M, Mostaan H, Derakhshan E. Microstructual and mechanical studies of the dissimilar tabular joints of Incoloy alloy 825 and AISI 316 stainless steel. J Mar Eng Technol 2020;19. doi:10.1080/20464177.2018.1508805.

Ibrahim IR, Khedr M, Mahmoud TS, Abdel-Aleem HA, Hamada A. Study on the mechanical performance of dissimilar butt joints between low Ni medium-Mn and Ni-Cr austenitic stainless steels processed by gas tungsten arc welding. Metals (Basel) 2021;11. doi:10.3390/met11091439.

Chuaiphan W, Srijaroenpramong L. Effect of hydrogen in argon shielding gas for welding stainless steel grade SUS 201 by GTA welding process. J Adv Join Process 2020;1. doi:10.1016/j.jajp.2020.100016.

Zhang H, Xu J, Hao D, Esmail OMAO. Microstructure and Mechanical Properties of Laser-Welded Joints between DP590 Dual-Phase Steel and 304 Stainless Steel with Preset Nickel Coating. Materials (Basel) 2023;16. doi:10.3390/ma16072774.

Chen HC, Ng FL, Du Z. Hybrid laser-TIG welding of dissimilar ferrous steels: 10 mm thick low carbon steel to 304 austenitic stainless steel. J Manuf Process 2019;47. doi:10.1016/j.jmapro.2019.10.013.

Azwinur, Syukran, Akhyar, Ferdiyansyah. The Effect of Electrode Type on The Tensile Strength Characteristics of Welded Joints Between SA.240 Tp.304 Stainless Steel and SA.36 Carbon Steel Alloys through SMAW Welding Process. Int J Integr Eng 2022;14. doi:10.30880/ijie.2022.14.04.004.

Gope DK, Chattopadhyaya S. Dissimilar Welding of Nickel Based Superalloy with Stainless Steel: Influence of Post Weld Heat Treatment. Mater Manuf Process 2022;37. doi:10.1080/10426914.2021.1945095.

García-García V, Frasco-García OD, Reyes-Calderón F, Hernández-Cristóbal O, Vergara-Hernández HJ. Effect of the thermal field on the microstructure of dissimilar welded joints between TWIP steel and 2205 duplex stainless steel. J Mater Res Technol 2022;17. doi:10.1016/j.jmrt.2022.02.029.

Hajiannia I, Shamanian M, Kasiri M. Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater Des 2013;50. doi:10.1016/j.matdes.2013.03.029.

Khan M, Dewan MW, Sarkar MZ. Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint. J Manuf Process 2021;64. doi:10.1016/j.jmapro.2021.02.058.

Nhung LT, Khanh PM, Hai LM, Nam ND. The relationship between continuous cooling rate and microstructure in the heat affected zone (HAZ) of the dissimilar weld between carbon steel and austenitic stainless steel. Acta Metall Slovaca 2017;23. doi:10.12776/ams.v23i4.1002.

Hoang AT, Le V V, Nguyen AX, Nguyen DN. A Study On The Changes In Microstructure And Mechanical Properties Of Multi-Pass Welding Between 316 Stainless Steel And Low-Carbon Steel. J Adv Manuf Technol 2018;12:25–40.

Nhung LT. Investigation the changes of microstructures and properties of the dissimilar welds between carbon steel and austenitic stainless steel. Hanoi University of Science and Technology, 2020.

Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. J Mater Sci Technol 2018;34:39–57. doi:10.1016/j.jmst.2017.10.024.

Prabakaran MP, Kannan GR, Pandiyarajan R. Effects of Welding Speed on Microstructure and Mechanical Properties of CO2 Laser Welded Dissimilar Butt Joints between Low Carbon Steel and Austenitic Stainless Steel. Adv Mater Process Technol 2022;8:1–12. doi:10.1080/2374068X.2020.1855960.

Le TN, Pham MK, Hoang AT, Nguyen DN. Microstructures And Elements Distribution In The Transition Zone Of Carbon Steel And Stainless Steel Welds. J Mech Eng Res Dev 2018;41:27–31. doi:10.26480/jmerd.03.2018.27.31.

Zhou X, Zhao H, Liu F, Yang B, Chen B, Tan C. Influence of energy ratio on microstructure and mechanical properties in the transition zone of hybrid laser-MIG welded AH36/316L dissimilar joints. J Mater Res Technol 2021;15:4487–501.

Hu YN, Wu SC, Chen L. Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone. Eng Fract Mech 2019;208:45–71.

Ishigami A, Roy MJ, Walsh JN, Withers PJ. The effect of the weld fusion zone shape on residual stress in submerged arc welding. Int J Adv Manuf Technol 2017;90:3451–64.

Kang H, Sharma A, Jung JP. Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics. Metals (Basel) 2020;10:934. doi:10.3390/met10070934.

Xu T, Shi Y, Cui Y, Liang Z. Effects of Magnetic Fields in Arc Welding, Laser Welding, and Resistance Spot Welding: A Review. Adv Eng Mater 2023;25. doi:10.1002/adem.202200682.

Xing C, Jia C, Han Y, Dong S, Yang J, Wu C. Numerical Analysis of the Metal Transfer and Welding Arc Behaviors in Underwater Flux-cored Arc Welding. Int J Heat Mass Transf 2020;153:119570. doi:10.1016/j.ijheatmasstransfer.2020.119570.

Cho W-I, Na S-J. Impact of driving forces on molten pool in gas metal arc welding. Weld World 2021;65:1735–47. doi:10.1007/s40194-021-01138-8.

Ngo Huu M, Nguyen Van A, Nguyen Van T, Tran Hai D, Nguyen Van T, Nguyen Tien D, et al. Material Flow Behavior on Weld Pool Surface in Plasma Arc Welding Process Considering Dominant Driving Forces. Appl Sci 2020;10:3569. doi:10.3390/app10103569.

Luo M, Hu R, Li Q, Huang A, Pang S. Physical understanding of keyhole and weld pool dynamics in laser welding under different water pressures. Int J Heat Mass Transf 2019;137:328–36. doi:10.1016/j.ijheatmasstransfer.2019.03.129.

Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog Mater Sci 2020;107:100590. doi:10.1016/j.pmatsci.2019.100590.

Huang Y, Huang J, Zhang J, Yu X, Li Q, Wang Z, et al. Microstructure and corrosion characterization of weld metal in stainless steel and low carbon steel joint under different heat input. Mater Today Commun 2021;29:102948. doi:10.1016/j.mtcomm.2021.102948.

Gürol U. Welding of High Manganese Austenitic Cast Steels Using Stainless Steel Covered Electrode. Int J Met 2023;17:1021–33. doi:10.1007/s40962-022-00834-5.

West P, Shunmugasamy VC, Usman CA, Karaman I, Mansoor B. Part II.: Dissimilar friction stir welding of nickel titanium shape memory alloy to stainless steel – microstructure, mechanical and corrosion behavior. J Adv Join Process 2021;4:100072. doi:10.1016/j.jajp.2021.100072.

Moravec J, Novakova I, Sobotka J, Neumann H. Determination of Grain Growth Kinetics and Assessment of Welding Effect on Properties of S700MC Steel in the HAZ of Welded Joints. Metals (Basel) 2019;9:707. doi:10.3390/met9060707.

Qi X, Du L, Hu J, Misra RDK. Enhanced impact toughness of heat affected zone in gas shield arc weld joint of low‐C medium‐Mn high strength steel by post‐weld heat treatment. Steel Res Int 2018;89:1700422.

Chen S, Zhao L bin, Wang J, Li C, Li Z, Ye X-X, et al. Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles. J Mater Sci 2020;55:13372–88. doi:10.1007/s10853-020-04927-6.

Jeong S, Lee Y, Park G, Kim B, Moon J, Park S-J, et al. Phase transformation and the mechanical characteristics of heat-affected zones in austenitic Fe–Mn–Al–Cr–C lightweight steel during post-weld heat treatment. Mater Charact 2021;177:111150. doi:10.1016/j.matchar.2021.111150.

Wei C, Zhang J, Yang S, Tao W, Wu F, Xia W. Experiment-based regional characterization of HAZ mechanical properties for laser welding. Int J Adv Manuf Technol 2015;78:1629–40.

Sharma SK, Maheshwari S, Singh RKR. Modeling and optimization of HAZ characteristics for submerged arc welded high strength pipeline steel. Trans Indian Inst Met 2019;72:439–54.

Garcia MP, Gervasyev A, Lu C, Barbaro FJ. Chemical composition and weld cooling time effects on heat-affected zone hardness of line pipe steels. Int J Press Vessel Pip 2022;200:104837.

Gadallah R, Osawa N, Tanaka S, Tsutsumi S. Critical investigation on the influence of welding heat input and welding residual stress on stress intensity factor and fatigue crack propagation. Eng Fail Anal 2018;89. doi:10.1016/j.engfailanal.2018.02.028.

Wang J, Yang L, Sun M, Liu T, Li H. Effect of energy input on the microstructure and properties of butt joints in DP1000 steel laser welding. Mater Des 2016;90. doi:10.1016/j.matdes.2015.11.006.

Tufaro LN, Manzoni I, Svoboda HG. Effect of Heat Input on AA5052 Friction Stir Welds Characteristics. Procedia Mater Sci 2015;8. doi:10.1016/j.mspro.2015.04.152.

Muthusamy C, Karuppiah L, Paulraj S, Kandasami D, Kandhasamy R. Effect of heat input on mechanical and metallurgical properties of gas tungsten arc welded lean super martensitic stainless steel. Mater Res 2016;19. doi:10.1590/1980-5373-MR-2015-0538.

Gao XL, Liu J, Zhang LJ. Effect of heat input on microstructure and mechanical properties of pulsed laser welded joints in Ti6Al4V/Nb dissimilar alloys. Int J Adv Manuf Technol 2018;94. doi:10.1007/s00170-017-1134-z.

Grajcar A, Rózański M, Stano S, Kowalski A, Grzegorczyk B. Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel. Adv Mater Sci Eng 2014;2014. doi:10.1155/2014/658947.

Li LC, Chai MY, Li YQ, Bai WJ, Duan Q. Effect of welding heat input on grain size and microstructure of 316L stainless steel welded joint. Appl. Mech. Mater., vol. 331, 2013. doi:10.4028/www.scientific.net/AMM.331.578.

Huang H, Fan G, Tan Z, Xiong DB, Guo Q, Guo C, et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy. Mater Sci Eng A 2017;699:55–61. doi:10.1016/j.msea.2017.05.074.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).