Potential of Underutilized Sago for Bioenergy Uses

Fetriyuna Fetriyuna (1), Sri Murniani Angelina Letsoin (2), Ignasius Radix A.P. Jati (3), Ratna Chrismiari Purwestri (4)
(1) Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(2) Faculty of Engineering, University of Musamus, Merauke Regency, Papua 99611, Indonesia
(3) Department of Food Technology, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
(4) Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
Fulltext View | Download
How to cite (IJASEIT) :
Fetriyuna, Fetriyuna, et al. “Potential of Underutilized Sago for Bioenergy Uses”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 144-50, doi:10.18517/ijaseit.14.1.19202.
Sago is a plant that grows naturally in some areas in Southeast and South Asia. Despite having multiple advantages, the usage of the sago palm is primarily from its starch content and is commonly used as an alternative replacement for white rice and wheat flour, the two most prominent staple foods, in several regions. Additionally, people are now more aware of how the total area of sago forests has decreased as monoculture, cash crops, or other food crop development have replaced it. This condition may endanger the ecology and the sustainability of food diversity. To support the bioeconomy principles, various utilizations of sago by turning it into higher value-added biomass need to be explored. The paper aims to review the potential utilization of sago as biomass and bioenergy as a value-added product after processing it for food. A literature review method in Scopus and PubMed databases was used to answer the research objective. Sago palm can be converted into bio-energy resources like biomass-biogas, bioelectricity, bioethanol, and biohydrogen. Together with the advancement in the processing of sago starch, sago waste from bark, pulp, fiber, or hampas is transformed into different products, e.g., plywood and particle board, sago craft from sago bark and fiber; thus, sago waste or sago hampas is a prospective bioenergy commodity. In conclusion, sago provides advantages beyond food diversity, such as lowering household food insecurity and promoting sago's use for biomass and bioenergy.

P. K. Townsend, “Sago Production in a New Guinea Economy,” in Human Ecology, Springer, 1974, pp. 217–236.

H. Konuma, “Status and outlook of global food security and the role of underutilized food resources,” in Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, Singapore: Springer, 2018, pp. 3–16. doi: 10.1007/978-981-10-5269-9.

M. H. Bintoro, M. I. Nurulhaq, A. J. Pratama, F. Ahmad, and L. Ayulia, “Growing area of sago palm and its environment,” in Sago Palm, Springer, Singapore, 2018, pp. 17–29.

N. J. Jonatan, A. Ekayuliana, I. M. K. Dhiputra, and Y. S. Nugroho, “The Utilization of Metroxylon Sago (Rottb.) Dregs for Low Bioethanol as Fuel Households Needs in Papua Province Indonesia,” KnE Life Sci., vol. 3, no. 5, p. 150, 2017, doi:10.18502/kls.v3i5.987.

W. Girsang, “Feasibility of Small-Scale Sago Industries in the Maluku Islands, Indonesia,” in Sago Palm Multiple Contributions to Food Security and Sustainable Livelihoods, H. Ehara, Y. Toyoda, and D. V. Johnson, Eds., Singapore, 2018, pp. 109–122. doi:10.1007/978-981-10-5269-9.

S. K. Thangavelu, T. Rajkumar, D. K. Pandi, A. S. Ahmed, and F. N. Ani, “Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste,” Waste Manag., vol. 86, pp. 80–86, 2019, doi:10.1016/j.wasman.2019.01.035.

F. Zhu, “Recent advances in modifications and applications of sago starch,” Food Hydrocoll., vol. 96, pp. 412–423, 2019, doi:10.1016/j.foodhyd.2019.05.035.

P. D. Dwyer and M. Minnegal, “Sago palms and variable garden yields: A case study from Papua New Guinea,” Man Cult. Ocean., vol. 10, pp. 81–102, 1994.

C. M. F. E. A. of the R. of Indonesia, “Pemberdayaan Masyarakat Sagu untuk Dorong Percepatan Pengembangan Sagu Nasional (Sago Community Empowerment to Encourage the Acceleration of National Sago Development). Press Release No. HM.4.6/203/SET.M.EKON.3/12/2020.” Coordinating Ministry For Economic Affairs of the Republic of Indonesia, Jakarta, Indonesia, 2020.

Y. Toyoda, “Anthropological studies of sago palm in Papua New Guinea,” Ru-Centre for Asian Area Studies, Tokyo, 2008.

Sunderland, T., Powell, B., Ickowitz, A., Foli, S., Pinedo-Vasquez, M., Nasi, R., et al. (2013). Food security and nutrition: The role of forests. Discussion Paper. Bogor, Indonesia: CIFOR.

H. Konuma, “Status and Outlook of Global Food Security and the Role of Underutilized Food Resources: Sago Palm,” in Sago palm: Multiple contributions to food security and sustainable livelihoods, H. Ehara, Y. Toyoda, and D. V Johnson, Eds., Tokyo: Springer Nature, 2018, pp. 3–16. doi:10.1007/978-981-10-5269-9.

N. N. Wirawan et al., “Food consumption and dietary diversity of women in transmigrant area Buol, Central Sulawesi and original location Demak, Central Java, Indonesia,” Malays. J. Nutr., vol. 24, no. 4, pp. 587–596, 2018.

S. M. A. Letsoin, D. Herak, F. Rahmawan, and R. C. Purwestri, “Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery,” Sustainability, vol. 12, no. 6, 2020, doi:10.3390/su12166623.

M. Jariyapong, S. Roongtawanreongsri, A. Romyen, and B. Somboonsuke, “Growth prediction of sago palm (Metroxylon sagu) in Thailand using the Linear Mixed-effect model,” Biodiversitas J. Biol. Divers., vol. 22, no. 12, pp. 5293–5301, 2021, doi:10.13057/biodiv/d221209.

D. G. of E. Crops, “Tree Crop Statistics of Indonesia 2018-2020: Sago.” Secretariat of Directorate General of Estates, Ministry of Agriculture Republic of Indonesia, Jakarta, Indonesia, 2019.

A. P. Metaragakusuma, O. Katsuya, and H. Bai, “An Overview of the Traditional use of sago for Sago-based Food Industry in Indonesia,” KnE Life Sci., pp. 119–124, 2016, doi:10.18502/kls.v3i3.382.

N. C. Grace and C. J. Henry, “The Physicochemical Characterization of Unconventional Starches and Flours Used in Asia,” Foods, vol. 9, no. 4, p. 182, 2020, doi:10.3390/foods9020182.

S. Sonia, F. Witjaksono, and R. Ridwan, “Effect of cooling of cooked white rice on resistant starch content and glycemic response,” Asia Pac J Clin Nut, vol. 24, no. 4, pp. 620–625, 2015, doi:10.6133/apjcn.2015.24.4.13.

E. Escarnot, J.-M. Jacquemin, R. Agneessens, and M. Paquot, “Comparative study of the content and profiles of macronutrients in spelt and wheat, a review,” BASE, 2012.

R. Mogra and S. Midha, “Value addition of traditional wheat flour vermicelli,” J. Food Sci. Technol., vol. 50, no. 4, pp. 815–820, 2013, doi:10.1007/s13197-011-0403-3.

D. Tjokrokusumo, F. C. Octaviani, and R. Saragih, “Fortification of Mung bean (Vigna radiata) and Ear mushroom (Auricularia auricula-judae) in dried sago noodles,” J. Microb. Syst. Biotechnol., vol. 1, no. 2, pp. 34–40, 2019, doi:10.37604/jmsb.v1i2.30.

C. Litaay, A. Indriati, and N. K. I. Mayasti, “Fortification of sago noodles with fish meal skipjack tuna (Katsuwonus pelamis),” Food Sci. Technol., 2021, doi:10.1590/fst.46720.

M. N. Azkia, S. B. Wahjuningsih, and C. H. Wibowo, “The nutritional and functional properties of noodles prepared from sorghum, mung bean and sago flours,” Food Res., vol. 5, no. S2, pp. 65–69, 2021, doi:10.26656/fr.2017.5(S2).002.

FAO, Sustainable Diets and Biodiversity - Directions and solutions for policy, research and actions. Rome, Italy: FAO, 2012.

J. C. Lai, W. A. W. A. Rahman, and W. Y. Toh, “Characterisation of sago pith waste and its composites,” Ind. Crops Prod., vol. 45, pp. 319–326, 2013, doi:10.1016/j.indcrop.2012.12.046.

T. Mishima, “New Sago Palm Starch Resources and Starch Pith Waste Properties,” in Sago Palm, H. Ehara, Y. Toyoda, and D. V. Johnson, Eds., Singapore: Springer, Singapore, 2018, pp. 309–315. doi:10.1007/978-981-10-5269-9.

S. M. A. Letsoin, D. Guth, D. Herak, and R. C. Purwestri, “Analyzing Maize Plant Height Using Unmanned Aerial Vehicle (UAV) based on Digital Surface Models (DSM),” IOP Conf. Ser. Earth Environ. Sci., vol. 1187, 2023, doi:10.1088/1755-1315/1187/1/012028.

F. B. Ahmad, P. A. Williams, J.-L. Doublier, S. Durand, and A. Buleon, “Physico-chemical characterisation of sago starch,” Carbohydr. Polym., vol. 38, no. 4, pp. 361–370, 1999, doi:10.1016/S0144-8617(98)00123-4.

L. A. Tuan and Tuan, “w,” J. Sci. Technol. Tech. Univ., vol. 73, no. b, pp. 98–105, 2009.

S. Komarayati, I. Winarni, and Djarwanto, “Bioethanol Manufacturing from Empulur Sagu (Metroxylon Spp.) Using enzymes,” J. For. Prod. Res., vol. 29, no. 1, pp. 20-32., 2011.

A. C. Wilkie, K. J. Riedesel, and J. M. Owens, “Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks p,” Biomass and Bioenergy, p. 40, 2000.

V. Alfonsín, R. Maceiras, and C. Gutiérrez, “Bioethanol production from industrial algae waste,” Waste Manag., vol. 87, pp. 791–797, 2019, doi:10.1016/j.wasman.2019.03.019.

R. Praveenkumar, K. Suresh, S. Chozhavendhan, and B. Bharathiraja, “Comparative Analysis of Saccharification of Cassava Sago Waste Using Aspergillus Niger and Bacillus Sp. for the Production of Bio-Ethanol using Saccharomyces Cerevisiae,” Int. J. ChemTech Res., vol. 6, no. 12, pp. 5090–5094, 2014.

J. Rambli and R. Khezri, “Evaluation of Biochar from Sago (Metroxylon Spp.) as a Potential Solid Fuel,” BioResources, vol. 14, no. 1, pp. 1928–1940, 2019.

V. Sukumar, V. Manieniyan, and S. Sivaprakasam, “Bio Oil Production from Biomass Using Pyrolysis and Upgrading - A Review,” Int. J. ChemTech Res., vol. 8, no. 1, pp. 196–206, 2015.

S. M. Abdul Aziz, R. Wahi, Z. Ngaini, and S. Hamdan, “Bio-oils from microwave pyrolysis of agricultural wastes,” Fuel Process. Technol., vol. 106, pp. 744–750, 2013, doi:10.1016/j.fuproc.2012.10.011.

M. A. Jenol, M. F. Ibrahim, E. Kamal Bahrin, S. W. Kim, and S. Abd-Aziz, “Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell,” Molecules, vol. 24, no. 13, p. 2397, 2019, doi:10.3390/molecules24132397.

S. Ahmed, E. Rozaik, and H. Abdelhalim, “Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula,” Polish J. Environ. Stud., vol. 25, no. 2, pp. 503–510, 2016, doi:10.15244/pjoes/61115.

A. M. Nizzy, S. Kannan, and S. B. Anand, “Identification of Hydrogen Gas Producing Anaerobic Bacteria Isolated from Sago Industrial Effluent,” Curr. Microbiol., vol. 77, no. 9, pp. 2544–2553, 2020, doi:10.1007/s00284-020-02092-2.

K. Sabariswaran, P. Papitha, R. Indumathi, S. Sundararaj, and S. P. Raj, “Biohydrogen production from sago effluent,” J. Biodivers. Environ. Sci., vol. 3, no. 2, pp. 17–23, 2013.

D. S. Awg-Adeni, K. B. Bujang, M. A. Hassan, and S. Abd-Aziz, “Recovery of glucose from residual starch of sago hampas for bioethanol production,” Biomed Res. Int., vol. 2013, 2013.

M. F. Wahida, S. Nurashikin, N. N. Sing, V. Micky, and A. D. S. Awang, “Feasibility of Sago bioethanol liquid waste as a feedstock for laccase production in recombinant Pichia pastoris,” Res. J. Biotechnol., vol. 16, p. 9, 2021.

H. Nururrahmah, Budiyono, and U. Sudarno, “Physicochemical Characteristic of Sago Hampas and Sago Wastewater in Luwu Regency,” E3S Web Conf., vol. 73, p. 07007, 2018, doi:10.1051/e3sconf/20187307007.

P. Elaiyaraju and N. Partha, “Studies on biogas production by anaerobic process using agroindustrial wastes,” Res. Agric. Eng., vol. 62, no. No. 2, pp. 73–82, 2016, doi:10.17221/65/2013-RAE.

S. Abd-Aziz, “Sago starch and its utilisation,” J. Biosci. Bioeng., vol. 94, no. 6, pp. 526–529, 2002, doi:10.1016/S1389-1723(02)80190-6.

M. Vincent, B. R. A. Senawi, E. Esut, N. M. Nor, and D. S. A. Adeni, “Sequential saccharification and simultaneous fermentation (SSSF) of sago hampas for the production of bioethanol,” Sains Malaysiana, vol. 44, no. 6, pp. 899–904, 2015.

I. Supu and I. Jaya, “Synthesis and Compression Strength Properties of Composite Based on Sago Pulp Fiber Waste,” IOP Conf. Ser. Earth Environ. Sci., vol. 187, p. 012005, 2018, doi:10.1088/1755-1315/187/1/012005.

J. W. H. Stefanie, O. Elferink, F. Driehuis, J. C. Gottschal, and S. F. Spoelstra, “Silage fermentation processes and their manipulation,” in Silage Making in the Tropics with Particular Emphasis on Smallholders, L. ‘t Mannetje, Ed., FAO, 2000, pp. 17–30.

S. Vikineswary, Y. L. Shim, J. J. Thambirajah, and N. Blakebrough, “Possible microbial utilization of sago processing wastes,” Resour. Conserv. Recycl., vol. 11, no. 1, pp. 289–296, 1994, doi:10.1016/0921-3449(94)90096-5.

T. H. Rasyid, Y. Kusumawaty, and S. Hadi, “The utilization of sago waste: prospect and challenges,” IOP Publishing, 2020, p. 012023.

H. Y. Ch’ng, O. H. Ahmed, S. Kassim, and N. M. A. Majid, “Recycling of Sago (Metroxylon sagu) Bagasse with Chicken Manure Slurry through Co-composting,” J. Agric. Sci. Technol., vol. 16, no. 6, pp. 1441–1454, 2014.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).