Composite of Magnesium and Carbonate Apatite for Biodegradable Bone Implants: A Comparative Study on Sintering and Extrusion Techniques

Iwan Setyadi (1), Suryadi (2), I Nyoman Jujur (3), Mirza Wibisono (4), Damisih (5), Maykel Manawan (6), Krisna Adhitya (7), Arif Hidayat (8), Achmad Fauzi Kamal (9), Rahyusalim (10), Bambang Suharno (11), Sugeng Supriadi (12)
(1) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(2) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(3) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(4) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(5) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(6) Faculty of Defense Technology, Indonesia Defense University, Bogor1681, Indonesia
(7) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(8) Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, Banten, 15314, Indonesia
(9) Department Orthopedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo General Hospital, 10430, Indonesia
(10) Department Orthopedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo General Hospital, 10430, Indonesia
(11) Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, I 16424, Indonesia
(12) Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Setyadi, Iwan, et al. “Composite of Magnesium and Carbonate Apatite for Biodegradable Bone Implants: A Comparative Study on Sintering and Extrusion Techniques”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 1, Feb. 2024, pp. 73-80, doi:10.18517/ijaseit.14.1.19211.
Developing biodegradable bone implants using magnesium-based materials has garnered significant attention in research. Magnesium offers favorable properties, such as low density, biocompatibility, elastic modulus like bone, and high toxicity limits. However, improvements are needed in mechanical properties and degradation rate. This study focuses on enhancing these properties by developing a novel composite of magnesium with carbonate apatite (CA) reinforcement, Mg/5CA. Compared to hydroxyapatite (HA), CA offers better absorption and avoids fibrotic tissue formation. However, CA undergoes carbonate decomposition during sintering, leading to composite degradation. To address this, an extrusion process is employed to prevent carbonate decomposition. The advanced sintering and extrusion compaction processes are compared for the Mg/5CA composite, examining density, microstructure, hardness, compressive strength, and biocorrosion. Results demonstrate that extrusion increases relative density while CA slightly reduces it. Microstructural analysis reveals finer and elongated grains, tighter bonding between CA and Mg particles, and reduced microporosity in the extruded composite. Mechanical properties, including hardness distribution and compressive strength, are improved in the extruded composite, and the degradation rate decreases compared to sintering. Overall, the extrusion process effectively enhances Mg/5CA composite properties, positioning it as a promising manufacturing technique for biodegradable implant materials. This research contributes to the development of advanced biodegradable implants, which can have significant applications in the field of medical science. Further investigations in this area can contribute to the ongoing advancements in biodegradable implant technology.

Z. Shan, X. Xie, X. Wu, S. Zhuang, and C. Zhang, “Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review),” J. Orthop. Transl., vol. 36, no. July, pp. 184–193, 2022, doi: 10.1016/j.jot.2022.09.013.

L. D. C. Gutiérrez Púa, J. C. Rincón Montenegro, A. M. Fonseca Reyes, H. Zambrano Rodríguez, and V. N. Paredes Méndez, “Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review,” J. Mater. Sci., vol. 58, no. 9, pp. 3879–3908, 2023, doi: 10.1007/s10853-023-08237-5.

M. Rahman, N. K. Dutta, and N. Roy Choudhury, “Magnesium Alloys With Tunable Interfaces as Bone Implant Materials,” Front. Bioeng. Biotechnol., vol. 8, no. June, 2020, doi: 10.3389/fbioe.2020.00564.

M. R. Sahu, T. S. S. Kumar, and U. Chakkingal, “A review on recent advancements in biodegradable Mg-Ca alloys,” J. Magnes. Alloy., vol. 10, no. 8, pp. 2094–2117, 2022, doi: 10.1016/j.jma.2022.08.002.

F. Khorashadizade et al., “Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties,” J. Mater. Res. Technol., vol. 15, pp. 6034–6066, 2021, doi:10.1016/j.jmrt.2021.10.141.

K. N. Braszczyńska-Malik, “Types of component interfaces in metal matrix composites on the example of magnesium matrix composites,” Materials (Basel)., vol. 14, no. 18, 2021, doi: 10.3390/ma14185182.

J. Su, J. Teng, Z. Xu, and Y. Li, “Biodegradable magnesium-matrix composites : A review,” vol. 27, no. 6, pp. 724–744, 2020.

M. Khodaei, F. Nejatidanesh, M. J. Shirani, S. Iyengar, H. Sina, and O. Savabi, “Magnesium/Nano-hydroxyapatite Composite for Bone Reconstruction: The Effect of Processing Method,” J. Bionic Eng., vol. 17, no. 1, pp. 92–99, 2020, doi: 10.1007/s42235-020-0007-6.

E. Ghazizadeh, A. H. Jabbari, and M. Sedighi, “In vitro corrosion-fatigue behavior of biodegradable Mg/HA composite in simulated body fluid,” J. Magnes. Alloy., vol. 9, no. 6, pp. 2169–2184, 2021, doi: 10.1016/j.jma.2021.03.027.

R. del Campo, B. Savoini, A. Muñoz, M. A. Monge, and G. Garcés, “Mechanical properties and corrosion behavior of Mg-HAP composites,” J. Mech. Behav. Biomed. Mater., vol. 39, pp. 238–246, 2014, doi: 10.1016/j.jmbbm.2014.07.014.

R. del Campo, B. Savoini, A. Muñoz, M. A. Monge, and R. Pareja, “Processing and mechanical characteristics of magnesium-hydroxyapatite metal matrix biocomposites,” J. Mech. Behav. Biomed. Mater., vol. 69, no. November 2016, pp. 135–143, 2017, doi: 10.1016/j.jmbbm.2016.12.023.

K. Kudoh et al., “Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure,” J. Mater. Sci. Mater. Med., vol. 34, no. 1, 2023, doi: 10.1007/s10856-022-06710-2.

Y. S. Shin, M. K. Jo, Y. S. Cho, and S. H. Yang, “Diffusion-Controlled Crystallization of Calcium Phosphate in a Hydrogel toward a Homogeneous Octacalcium Phosphate/Agarose Composite,” ACS Omega, vol. 7, no. 1, pp. 1173–1185, 2022, doi: 10.1021/acsomega.1c05761.

L. H. Thang, L. T. Bang, B. D. Long, N. A. Son, and S. Ramesh, “Effect of Carbonate Contents on the Thermal Stability and Mechanical Properties of Carbonated Apatite Artificial Bone Substitute,” J. Mater. Eng. Perform., vol. 32, no. 3, pp. 1006–1016, 2023, doi: 10.1007/s11665-022-07169-6.

M. Du, J. Chen, K. Liu, H. Xing, and C. Song, “Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair,” Compos. Part B Eng., vol. 215, no. February, p. 108790, 2021, doi: 10.1016/j.compositesb.2021.108790.

K. Ishikawa and K. Hayashi, “Carbonate apatite artificial bone,” Sci. Technol. Adv. Mater., vol. 22, no. 1, pp. 683–694, 2021, doi: 10.1080/14686996.2021.1947120.

K. Ishikawa, “Carbonate apatite bone replacement: Learn from the bone,” J. Ceram. Soc. Japan, vol. 127, no. 9, pp. 595–601, 2019, doi: 10.2109/jcersj2.19042.

I. Setyadi et al., “Characteristics investigation of the initial development of miniplate made from composite of magnesium/carbonate apatite fabricated by powder metallurgy method for biodegradable implant applications,” in Key Engineering Materials, Trans Tech Publications Ltd, 2020, pp. 194–198. doi: 10.4028/www.scientific.net/KEM.833.194.

I. Setyadi et al., “Fabrication of Magnesium-Carbonate Apatite by Conventional Sintering and Spark Plasma Sintering for Orthopedic Implant Applications,” Sains Malaysiana, vol. 51, no. 3, pp. 883–894, 2022, doi: 10.17576/jsm-2022-5103-22.

Y. K. Eriwati, D. Arsista, S. Triaminingsih, and Sunarso, “Effect of CaSO4 dissolution-precipitation time on formation of porous carbonate apatite as bone replacement material,” J. Biomimetics, Biomater. Biomed. Eng., vol. 44, pp. 83–90, 2020, doi: 10.4028/www.scientific.net/JBBBE.44.83.

K. Hayashi, M. L. Munar, and K. Ishikawa, “Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration,” Mater. Sci. Eng. C, vol. 111, no. February, p. 110848, 2020, doi: 10.1016/j.msec.2020.110848.

C. H. Yoder, K. R. Stepien, and T. M. Edner, “A new model for the rationalization of the thermal behavior of carbonated apatites,” J. Therm. Anal. Calorim., vol. 140, no. 5, pp. 2179–2184, 2020, doi: 10.1007/s10973-019-08946-7.

A. J. Rahyussalim et al., “Synthesis, Structural Characterization, Degradation Rate, and Biocompatibility of Magnesium-Carbonate Apatite (Mg-Co3Ap) Composite and Its Potential as Biodegradable Orthopaedic Implant Base Material,” J. Nanomater., vol. 2021, 2021, doi: 10.1155/2021/6615614.

X. Wang, X. Wang, X. Hu, and K. Wu, “Effects of hot extrusion on microstructure and mechanical properties of Mg matrix composite reinforced with deformable TC4 particles,” J. Magnes. Alloy., vol. 8, no. 2, pp. 421–430, 2020, doi: 10.1016/j.jma.2019.05.015.

A. J. Rahyussalim, S. Supriadi, A. F. Kamal, A. F. Marsetio, and P. M. Pribadi, “Magnesium-carbonate apatite metal composite: Potential biodegradable material for orthopaedic implant,” in AIP Conference Proceedings, AIP Publishing LLC, 2019, p. 20021. doi: 10.1063/1.5096689.

I. Setyadi, A. F. Marsetio, A. F. Kamal, A. J. Rahyussalim, S. Supriadi, and B. Suharno, “Microstructure and microhardness of carbonate apatite particle-reinforced Mg composite consolidated by warm compaction for biodegradable implant application,” Mater. Res. Express, 2020, doi: 10.1088/2053-1591/ab7d70.

M. M. Jamel, M. M. Jamel, and H. F. Lopez, “Designing Advanced Biomedical Biodegradable Mg Alloys: A Review,” Metals (Basel)., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.3390/met12010085.

M. Pizzi, F. De Gaetano, M. Ferroni, F. Boschetti, and M. Annoni, “A Deep-Hole Microdrilling Study of Pure Magnesium for Biomedical Applications,” Micromachines, vol. 14, no. 1, pp. 1–16, 2023, doi: 10.3390/mi14010132.

G. Xiong et al., “Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering,” Curr. Appl. Phys., vol. 16, no. 8, pp. 830–836, 2016, doi: 10.1016/j.cap.2016.05.004.

ASTM, “ASTM-G5-14.” 2021.

ASTM, “ASTM-G102-89.” 2019.

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3,” J. Biomed. Mater. Res., vol. 24, no. 6, pp. 721–734, 1990, doi: 10.1002/jbm.820240607.

J. Čović, I. Jovanović, A. Zarubica, A. Bojić, and M. Ranđelović, “Morpho-Structural Characterization and Electrophoretic Deposition of Xonotlite Obtained by a Hydrothermal Method,” Iran. J. Chem. Chem. Eng., vol. 41, no. 6, pp. 1932–1941, 2022, doi: 10.30492/ijcce.2021.131277.4241.

B. A. Witika, J. C. Stander, V. J. Smith, and R. B. Walker, “Nano co-crystal embedded stimuli-responsive hydrogels: A potential approach to treat HIV/AIDS,” Pharmaceutics, vol. 13, no. 2, pp. 1–21, 2021, doi: 10.3390/pharmaceutics13020127.

Y. Guo et al., “The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite,” J. Mech. Behav. Biomed. Mater., vol. 123, no. May, p. 104759, 2021, doi: 10.1016/j.jmbbm.2021.104759.

C. Gurau, G. Gurau, V. Mitran, A. Dan, and A. Cimpean, “The influence of severe plastic deformation on microstructure and in vitro biocompatibility of the new Ti-Nb-Zr-Ta-Fe-O alloy composition,” Materials (Basel)., vol. 13, no. 21, pp. 1–15, 2020, doi: 10.3390/ma13214853.

Y. Doi et al., “Pyrolysis–gas chromatography of carbonate apatites used for sintering,” J. Biomed. Mater. Res., vol. 29, no. 11, pp. 1451–1457, 1995, doi: 10.1002/jbm.820291117.

M. Reihanian, A. Baharloo, and S. M. Lari Baghal, “Wear-Resistant Al/SiC-Gr Hybrid Metal Matrix Composite Fabricated by Multiple Annealing and Roll Bonding,” J. Mater. Eng. Perform., vol. 27, no. 12, pp. 6676–6689, 2018, doi: 10.1007/s11665-018-3740-9.

E. Gerashi, R. Alizadeh, and T. G. Langdon, “Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review,” J. Magnes. Alloy., vol. 10, no. 2, pp. 313–325, 2022, doi: 10.1016/j.jma.2021.09.009.

A. Bahmani, S. Arthanari, and K. S. Shin, “Formulation of corrosion rate of magnesium alloys using microstructural parameters,” J. Magnes. Alloy., vol. 8, no. 1, pp. 134–149, 2020, doi: 10.1016/j.jma.2019.12.001.

K. Sarayama et al., “Corrosion Properties of the β-Mg17Al12 Phase in NaCl Solutions,” Mater. Trans., vol. 63, no. 6, pp. 911–917, 2022, doi: 10.2320/matertrans.MT-MA2022023.

L. Wei and Z. Gao, “Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review,” RSC Adv., vol. 13, no. 12, pp. 8427–8463, 2023, doi: 10.1039/d2ra07829e.

L. Xu, X. Liu, K. Sun, R. Fu, and G. Wang, “Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications,” Materials (Basel)., vol. 15, no. 7, 2022, doi: 10.3390/ma15072613.

P. Das, T. S. S. Kumar, K. K. Sahu, and S. Gollapudi, “Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants,” Corros. Rev., vol. 40, no. 4, pp. 289–333, 2022, doi: 10.1515/corrrev-2021-0088.

I. Nakahata, Y. Tsutsumi, and E. Kobayashi, “Mechanical Properties and Corrosion Resistance of Magnesium – Hydroxyapatite Composites Fabricated,” Metals (Basel)., vol. 10, no. 1314, pp. 1–14, 2020.

A. S. Gnedenkov et al., “The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions,” J. Magnes. Alloy., vol. 10, no. 5, pp. 1326–1350, 2022, doi: 10.1016/j.jma.2021.11.027.

R. Radha and D. Sreekanth, “Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications,” J. Magnes. Alloy., vol. 8, no. 2, pp. 452–460, 2020, doi: 10.1016/j.jma.2019.05.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).