A Study on the Estimation of the Frobenius Numbers Generated by Binomial Coefficients Using Linear Regression
How to cite (IJASEIT) :
D. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon, "Faster algorithms for Frobenius numbers," Electron. J. Comb., vol. 12, no. 1, p. R27, Jun. 2005, doi: 10.37236/1924.
E. Dai and K. Cheng, "The Frobenius problem for special progressions," Electron. Res. Arch., vol. 31, no. 12, pp. 7195-7206, Nov. 2023, doi: 10.3934/era.2023364.
A. M. Robles-Pérez and J. C. Rosales, "The Frobenius number for sequences of triangular and tetrahedral numbers," J. Number Theory, vol. 186, pp. 473-492, May 2018, doi: 10.1016/j.jnt.2017.10.014.
T. Komatsu, "The Frobenius number for sequences of triangular numbers associated with number of solutions," Ann. Combin., vol. 26, no. 3, pp. 757-779, Jul. 2022, doi: 10.1007/s00026-022-00594-3.
T. Komatsu, "The Frobenius number associated with the number of representations for sequences of repunits," C. R. Math., vol. 361, no. G1, pp. 73-89, Jan. 2023, doi: 10.5802/crmath.394.
T. Komatsu, N. Gupta, and M. Upreti, "Frobenius numbers associated with Diophantine triples of x²+y²=z³," Bull. Aust. Math. Soc., pp. 1-10, 2024, doi: 10.1017/S0004972724000960.
F. Arias, J. Borja, and C. Rhenals, "The Frobenius problem for numerical semigroups generated by sequences of the form ca^n-d," Semigroup Forum, vol. 107, no. 3, pp. 581-608, Dec. 2023, doi: 10.1007/s00233-023-10387-6.
K. Song, "The Frobenius problem for extended Thabit numerical semigroups," Integers: Electronic Journal of Combinatorial Number Theory, vol. 21, Feb. 2021.
P. Srivastava and D. Thakkar, "The Frobenius problem for the Proth numbers," in Proc. Conf. Algorithms Discrete Appl. Math., Bhilai, India, 2024, pp. 162-175, doi: 10.1007/978-3-031-52213-0_12.
A. M. Robles-Pérez and J. C. Rosales, "A Frobenius problem suggested by prime k-tuplets," Discrete Math., vol. 346, no. 7, Jul. 2023, doi: 10.1016/j.disc.2023.113394.
M. A. Moreno-Frías and J. C. Rosales, "The covariety of numerical semigroups with fixed Frobenius number," J. Algebraic Combin., vol. 60, no. 2, pp. 555-568, Jul. 2024, doi: 10.1007/s10801-024-01342-x.
D. Singhal, "Distribution of genus among numerical semigroups with fixed Frobenius number," Semigroup Forum, vol. 104, no. 3, pp. 704-723, Jun. 2022, doi: 10.1007/s00233-022-10282-6.
M. B. Branco, I. Ojeda, and J. C. Rosales, "The set of numerical semigroups of a given multiplicity and Frobenius number," Portug. Math., vol. 78, no. 2, pp. 147-167, Aug. 2021, doi: 10.4171/PM/2064.
T. Komatsu, "On the determination of p-Frobenius and related numbers using the p-Apéry set," RACSAM, vol. 118, no. 2, p. 58, Feb. 2024, doi: 10.1007/s13398-024-01556-5.
T. Komatsu and H. Ying, "p-Numerical semigroups with p-symmetric properties," J. Algebra Appl., vol. 23, no. 13, Nov. 2024, doi: 10.1142/S0219498824502165.
E. R. García Barroso et al., "On p-Frobenius of affine semigroups," Mediterr. J. Math., vol. 21, no. 3, p. 90, Apr. 2024, doi: 10.1007/s00009-024-02625-0.
C. Cisto, M. Delgado, and P. A. García-Sánchez, "Algorithms for generalized numerical semigroups," J. Algebra Appl., vol. 20, no. 5, May 2021, doi: 10.1142/S0219498821500791.
I. García-Marco et al., "Universally free numerical semigroups," J. Pure Appl. Algebra, vol. 228, no. 5, May 2024, doi: 10.1016/j.jpaa.2023.107551.
M. A. Moreno-Frías and J. C. Rosales, "Counting the ideals with given genus of a numerical semigroup," J. Algebra Appl., vol. 22, no. 8, Aug. 2023, doi: 10.1142/S0219498823300027.
J. Herzog, T. Hibi, and D. I. Stamate, "Canonical trace ideal and residue for numerical semigroup rings," Semigroup Forum, vol. 103, no. 2, pp. 550-566, Oct. 2021, doi: 10.1007/s00233-021-10205-x.
J. I. García-García et al., "The complexity of a numerical semigroup," Quaest. Math., vol. 46, no. 9, pp. 1847-1861, Sep. 2023, doi: 10.2989/16073606.2022.2114391.
J. C. Rosales, M. B. Branco, and M. A. Traesel, "Numerical semigroups with concentration two," Indag. Math., vol. 33, no. 2, pp. 303-313, Mar. 2022, doi: 10.1016/j.indag.2021.07.004.
H. J. Smith, "On isolated gaps in numerical semigroups," Turk. J. Math., vol. 46, no. 1, pp. 123-129, Jan. 2022, doi: 10.3906/mat-2107-54.
M. Bras-Amorós, "On the seeds and the great-grandchildren of a numerical semigroup," Math. Comput., vol. 93, no. 345, pp. 411-441, Aug. 2023, doi: 10.1090/mcom/3881.
A. Tripathi, "On numerical semigroups generated by compound sequences," Integers: Electronic Journal of Combinatorial Number Theory, vol. 21, Feb. 2021.
D. Singhal, "Numerical semigroups of small and large type," Int. J. Algebra Comput., vol. 31, no. 5, pp. 883-902, Aug. 2021, doi: 10.1142/S0218196721500417.
K. M. Klein, "On the fine-grained complexity of the unbounded SubsetSum and the Frobenius problem," in Proc. ACM-SIAM Symp. Discrete Algorithms (SODA), Philadelphia, PA, USA, 2022, pp. 3567-3582, doi: 10.1137/1.9781611977073.141.
M. B. Branco, I. Colaço, and I. Ojeda, "The Frobenius problem for generalized repunit numerical semigroups," Mediterr. J. Math., vol. 20, no. 1, p. 16, Feb. 2023, doi: 10.1007/s00009-022-02233-w.
F. Liu and G. Xin, "On Frobenius formulas of power sequences," arXiv, preprint arXiv:2210.02722, 2024. [Online]. Available: https://arxiv.org/abs/2210.02722.
F. Liu, G. Xin, S. Ye, and J. Yin, "The Frobenius formula for A = (a, ha + d, ha + b₂d, ..., ha + bₖd)," Ramanujan J., vol. 64, no. 2, pp. 489-504, Mar. 2024, doi: 10.1007/s11139-024-00837-2.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).